3.10perator Overloading

« Overloading Is an important feature of c++

[t 1s similar to function overloading. An operator Is a symbol
used for an operation.

« C++ has the ability to treat the user-defined data type.
« As a built in data type.

« The Operator + can be used to perform addition of two
variables but it Is not possible to perform addition of two
objects.

» Operator overloading is one of the most valuable concept to
perform this type of operation.

It Is a type of polymorphism permit to write multiple
definitions for functions and operators.

« The Operator +,-,* and = are used to carry the operations of
overloading.

« The Capability to relate the existing operator with a member
function and use the resulting operator with object of its class,
as Its operands Is called Operator Overloading.

Syntax:

Return type
{
S+1
S+2

Example

Number operator +(number D)
{

Number T;

T.X=X+D.X;

T.Y=Y+D.Y;

Return T;

Overloaded Operators are redefined using the keyword
Operator followed by an Operator symbol.

An Operator function should be either a member function or
Friend function.

A Friend Function requires one argument for unary operators
and two for binary Operators.

A Member function requires one argument for binary operator
and no arguments for unary Operators.

The prototype for operator overloading can be
return as follows:
 Void Operator ++();
Void Operator - -();
Void Operator — ();
* Num operator + (num);
 Friend num operator * (int, num);
 Void Operator =(num);

The Prototype of operator overloading function in classes.

The Operator Overloading can be carried out in the following
steps:

Define a class to be used for overloading operations.

In the public section the class contains the prototype of the
function operator().

Define the definition of the operator()

Example:

#include<iostream.h>
#include<conio.h>
class number
{
public:

int X;

intyY:;
number() {}
number (int j, int k)
{

X=J;

Y=k:

number operator +(number D)

{

number T;
T.X=X+D.X:
T.Y=Y+D.Y:
Return T;
}
void show()
{
cout<<’\n X="<<"\n Y="<<Y;
}

void main()

{

clrscr();
number A(2,3) ,B(4,5),C;
A.show();
B.show();
C=A+B;

C.show();

3.2 Overloading Unary Operators

« The Operator ++, - - and — or unary Operator.

« The unary Operator ++ and - - can be used as prefix and suffix with
the functions.

« These operators have only one operand.
Example:

#include<iostream.h>

#include<conio.h>

class num

{

private:

Int a,b,c,d;
public:

num(int j, intk, int m, int 1)

{
a=J,
b=k
c=m;
d=lI,
¥

void show(void);
void operator ++();

1
void num::show()
{
Cout<<,’A:,’<<a<<”B:”<<b<<,,C:”<<C<<,,D:”<<d;
}

void num:: operator ++()
{ ++a;++b;++c;++d;}

void main()
{
clrscr();
num X(3,2,5,7);
cout<<\n before increment of x:”;

X.show();
++X;
cout<<”\n after increment of x:”’;
X.show();

return O;

3.3 Overloading binary operator:

« Overloading with a single parameter is called binary operator
overloading

« Binary operators requires two operands binary operator or
overloaded using member function and friend function

« Overloading binary operator using member function:

« QOverloading binary operator using member function require 1
argument

« The argument contains value of the object which is to the right
of the operator

The overloading function should be declared as follows.

Syntax:

Operator(num 02);
Where,

Operator Is a symbol
Num is an class

02 is the argument of the class

Example:
03=01 operator + (02)
The callingunction can be written as,
03=01+02

Here the data membr are passed to the called function and
performs the number of addition based on number of
arguments

Example:
#include<iostream.h>
#include<conio.h>
class num
{

Inta,b,c,d;
public:
void(input(void);
void show(void);
num operator + (num);

¥

void num: :input()
{

cin >>a>>b>>c>>d;

}

void num : :show()

{

cout <<a<<b<<c<<d,

}

num : : operator+(num t)
{
m tmp;
tmp.a=a+t.a;
tmp.b=b+t.b;
tmp.c=c+t.c;
tmp.d=d+t.d;
return(tmp);

}

void main ()

{
num Xx,y,z;
X.input();
y.Input ();
Z=X+Y;
X.show();
y.show();
z.show();

¥

3.4 Overloading friend functions

Friend function are more useful in operator overloading
They are more flexible then member function,

The different between member function and friend function is
that member function arguments explicitly

The friend functions needs the param eter should be explicitly
fast.

Friend function requires two operands to be passed as
arguments

Syntax

Friend return type operator (variable!, operator symbol
variable?)

Example:
friend num operator + (num nl num n2)
#include <iostream.h>
#include<conio.h>
class num
{
inta,b,c,d;
public:
void input (void);
void show (void);
friend num operator*(int,num);
}
void num : : input()
{

cin >>a>>b>>c>>d;

}

void num : : show ()

{

cout<<a<<b<<c<<d,;

}

num operator*(inta, numt)
{

num tmp;

tmp.a = a*t.a;

tmp.b = b*t.b;

tmp.c = c*t.c;

tmp.d = d*t.d;

return(tmp);

}

void main()
{
num X,z;
x.input();
Z=3%X;
X.show();
z.show();

3.5 Type conversion

« The constants and variable of various data types are
companied in a single expression can be automatically
converted by the compiler.

* The compiler has no knowledge about the user-defined data
type and about their conversion of other data type.

« There are three possibilities of data conversion.
1. Conversion from Basic data type to user-defined data
type(class type)
2. Conversion from class type to basic data type
3. Conversion from one class type to another class type
Conversion type.

S.no

Conversion type

Routine in
destination class

Routine In source
class

class to class

Constructor

Conversion
function,
(operator
function)

class to Basic

Conversion
function,
(operator
function)

Basic to Class

Constructor

Basic source and destination objects are user defined data type
the conversion routine can be carried out using operator
function is source class or using constructor in destination
class.

If the user — defined object is destination class. The conversion
routine should be carried out using constructor in the
destination class.

If the user — defined object is a source object. The conversion
routine should be carried out using source object in the
operator function.

3.5.1 Conversion from Basic — class type

In this type the left hand operand of (=) equal sign If always
the class type. The right hand operand is always basic type.

The Conversion can be done by the compiler with the helpof
build routine or by applying type casting.
It uses constructors for changing the Basic type to class type.

Example:
#include<iostream.h>
#include<conio.h>
class data
{
intx:
float f:
public:
data()
{
x=0; f=0;
}
data(float m)
{
X=2:
f=m;

}

void show()

{
cout<<x<<f;
¥
b
Int main ()
{
data=z
z=1;
z.show();
Z=2.5
z.show();
1

3.5.2 Conversion from class type — Basic data
type

« The compiler does not have any knowledge about the
« user — defined data type using class.

 In this type of conversion the programmer explicitly specify
about the conversion.

« There instruction are return in a member function. This type of
conversion also known as over loading of type cast operators.

 In this type the left hand operand is Basic data type the right
hand operand is class type.

* To perform this conversion it must satisfy the following
condition.

« The conversion function should not have any argument
« Do not mention return type.
[t should be a class member function.
Example:
#include<iostream.h>
#include<conio.h>
class data
{
It X;
float f;

public;
data()

{

X=0; y=0;

by

operator int ()

{

return(x) ;

by
data (float (m)

{
X=2;
f=m;

}

void show()

{
cout<<x<<f;
}

&

int main()
{

int j;

float f;
data a;
a=95.9;
j=a;

f=a;
cout<<j;
cout<<f;

}

3.5.3 Conversion from one class type
another class type

« There are two ways to convert one class type to another class
type

* One Is to define a conversion operator function in source class
or a constructor in a destination class.

Example:
#include<iostream.h>
#include<conio.h>
class stock2:

{

Int code, item;

float price;

public:

stockl (int a, Iint b, int ¢)

{
code =3,
item =b;
price =c;

h

void disp()

{
cout<<code;
cout<<item;
cout<<price;

}

Int getcode()
{

return code;

b
Int getitem()

{

return item:

h
Int get price()

{

return price;

}

operator float()
{
return(item*price);
}

}

class stock?2

{

int code;

float val;

public:

stock2()

{
code=0;value=0;

}

stock2(int x,float y)
{

code=x;

val=y;

}

void disp()

{

cout<<code:
cout<<val:

¥
stock2(stockl p)

{

code=p.getcode();
val=p.getitem()*p.getprice();
}

&

void main()

{

stock 111(10,10,100.5)
stock 12;

Float tot=i1;

12=12;

11.disp();

12.disp();

¥

3.5.4 Rules For Overloading Operators

Overloading of an operator cannot change the basic idea of an
operator. when an operator iIs overloaded. its properties like
syntax, precedence, and associativity remain constant.

Example:

A and B are objects.
A+=B

Assigns additions of objects A and B to A. The overloaded
operator must carry the same task the original operator
according to the language.

The floating statement must perform the same operation like
the last statement.

A=A+B
Overloading of an operator must never change its natural
meaning.

An overloaded operator+ can be used for subtraction of two
objects. but this type of code decrease the utility of the
program.

Remember that the aine of operator overloading is to comfort
the programmer to carry various operations with objects.

3.6 Inheritance

« Itis one of the most useful characteristic of object oriented programming.
* New classes are created from existing classes.

» The properties of existing classes are extended to new classes.

« The new classes are called are derived classes.

« The existing classes are known as base classes.

« The term reusability means to reuse the properties of base class in the
derived class.

« Reusability is achieve using inheritance the outcome of inheritance is
reusability.

» The base class is called is called super class or parent class or ancestors
class.

 The derived class is called as sub class or child class or descendent class.
« ltisalso possible to derive a class from previously derived class.
 Aclass can be derived from more than one class.

3.6.1 Access specifies and simple inheritance:

« The public members of a class can be accessed by objects,
directly outside the class.

« The private members of the class can be accessed by public
member function of the same class.

« The protected access specified this same as private.

« The only difference iIs that it allows its derived classes to
access protected members directly with out member function.

Syntax:
Derived class

Class name of derived class:access specifier name of the base
class

{

Member variables of derived class

¥

Example:
1.class B:public A

{

¥
2.class B:private A

{

3.class B:protected A
{

¥
4.class B:A(default definition private)
{

« 1. When public access specified is used public members of the
derived class. similarly the protected members of the base
class or protected member of the derived class.

« 2. When a private access specified is used public and protected
members of the base class or private members of the derived
class.

3.6.2 Public inheritance

« A class can be derived publicly or privately.when a class iIs
derived publicly all the public members of the base class can
be accessed directly in the derived class.

« The public derivation does not allow the derived class to
access private member variables of the base class.

Example:

« Write a program to derive a class publicly from base
class.declare the base class with its member under public
section.

#include<iostream.h>
#include<conio.h>

Class A

{

Public:

Int X;

¥

Class B:public A
{

Public:

Int Y;

¥

void main()

{

clrscr();

B b;

b.x=20:

b.y=10;

count<<\n member of A:"<<b.x;
count<<’\n member of B:"<<b.y;

¥

3.6.3 Private inheritance

* The object of privately derived class cannot access the public
members of the base class directly.

 The member function are used to access the member of the base
class.

Example:

* Write a program to derive a class privately. Declare the member
of base class under public section.

#include<iostream.h>
#include<conio.h>
class A

{

public:

Int X;

1

Class B:private A
{

Public:

Inty;

B()

{

X=20:;

Y=40:;

}

void show()

{

cout<<’\n x="<<x;

cout<<’\n y="<<y;

}
Jo

void main()
{

clrscr();

B b;
b.show();

¥

3.6 4 Protected data with private inheritance

« The member functions of derived class cannot access the
private member variables of base class.

« The private members of base class can be accessed using
public member functions of the same class.

 To overcome this problem the protected access specifier is
used.

» The protected is same as private but it allows the derived class
to access the private members directly.

Example:
#include<iostream.h>
#include<conio.h>
class A

{

protected:

int x;

&

class B:private A
{

inty;

public:

B()

{

x=30;

y=40;

}

void shows()
{
cout<<’\n x="<<x;

cout<<’\n y="<<y;

h

b

void main()
{

clrscr()
B.b;
b.show();

¥

3.7 Types of Inheritance

e The process of inheritance can depends on the following
points.

1.Number of base classes:

* The program may contain one or more base classes.
2.Number of derived classes:

« A program may contain one or more derived classes.

The types of inheritance are as follows:

1.Single inheritance or simple
2.Multiple inheritance
3.Hierarchical inheritance
4.Multilevel inheritance
5.Hybird inheritance
6.Multipath inheritance

3.8 single inheritance:

When only one base class Is used for derivation of a class and
the derived class Is not used for base class.

Inheritance between one base class and one a derived class iIs
known as single inheritance.

The new class Is termed as derived class and the old class is
called base class.

A Derived class inherit data members and member functions
of base class.

The Constructor and destructor of base class are not inherited.

Example:
#include<iostream.h>
#include<conio.h>
Class ABC
{
protected:
char name[20];
int age;
b
class abc:public ABC
{
float height,weight;
public:
void getdata()
{ -
cin>>name>>age;
cin>>height>>weight;

}

void display()
{
cout<<name<<age;
cout<<height<<weight;
1
void main()
{
abc X:
X.getdata();

x.display();
h

3.9. Multiple Inheritance

 Two or more base classes are used for derivation of a class.

« That is this type of inheritance contains one or more base
classes and a single derived class it is known as multiple
Inheritance.

« When aclass is derived from more than one base class is
known as multiple inheritance.

 Properties of various base classes are transferred to single
derived class.

Example:
#include<iostream.h>
#include<conio.h>
class A

{

protected:

Int X:

¥

class B

{

protected:

Inty;

}

class C

{

protected:

Int z;

h

class D: public A,B,C
{

Int d;

public:

void getdata()

{

CiN>>X>>y>>7>>d;

}

void display()
{

cout<<x<<y<<z<<(,
¥

1

void main()

D.d1;

d1.getdata();
dl.display();

¥

3.10.Hierarchical inheritance

« Asingle base class is used for derivation of two or more
derived classes Is known as hierarchical inheritance.

* Inheritance also support hierarchical arrangement of programs.
 Hierarchical unit source the top down arrangement of classes.

Example:
#include<iostream.h>
#include<conio.h>
class A
{
protected:
It X;
¥
class B
{
protected:
Inty;
¥

class C
{
protected:
Int z;
}
class D: public A,public B
{
int d;
public :
void getdata()
{

CiN>>X>>y;

¥

void display()
{

CIN<<X<L<Y;

¥
1
class E:public D,public C

{
Int e;
public:

void get()
{
cout<<e<<z;
¥

¥

void main()
{

E el
el.getdata();
el.display();
el.get();
el.put();

¥

3.11 Multilevel inheritance

* When aclass Is from another derived class that it the derived
class act i1s a base class.

« This type of inheritance Is known as multilevel inheritance.
Example:

#include<iostream.h>

#include<conio.h>

class Al

{

protected :

Int age;

char name[20];

¥

void put()

{

cout<<age<<name;
cout<<height<<weight;
cout<<sex;

¥
b
void main()

{
A3.X;

X.get();
X.put();
}

class A2:public Al
{

protected:

float height;

float weight;

s

class A3:publc A2
{

protected:

char sex;

public:

void get()

{
cin>>age>>name;
cin>>height>t>weight;
cin>>sex;

}

3.12 Hybrid Inheritance

« The combination one or more type of inheritance is known as
hybrid inheritance.

 Here two types of inheritance is used. That is single and
multiple inheritance.

X-base class
y-derived class and base class of z.
w-base class

Example:
#include<iostream.h>
#include<conio.h>
class Al

{

protected:

int age;

char name[20];

3

class A2:public Al
{

protected:

float heirght;

float weight;

¥

class A3

{

protected:

char sex;

} 3

class Ad:public A2,A3
{

protected:

char address[20];
Public:

void get()

{

cin>>age>>name;
cin>>height>>weight;
cin>>sex;
cin>>address;

}

void put()

{

cout<<age<<name;
cout<<height<<weight;
cout<<sex;
cout<<address;

¥

2

void main()
{

A4 x;
x.get();
X.put();

1

3.13.Multipath Inheritance:

 When a class is derived from two or more classes which are
derived from the same base class is called multipath
Inheritance.

« |t consists of many types of inheritance such as Multiple,
Multilevel, Inheritance.

* X-base class
* v, z, w-derived classes of x.
* v, z-base class for w.

Example:
#include<iostream.h>
#include<conio.h>
{

protected:

Int age;

char name[20];

b

class A2:public Al
{

protected:

float height;

float weight;

¥

class A3:public Al

{

protected:

char sex;

}3

class A4:public A1,A2,A3
{

protected:

char address[20];
public:

void get()

{

cin>>age>>name;
cin>>height>>weigjht;
cin>>sex:
cin>>address;

}

void put()

{

cout<<age<<name;
cout<<height<<weight;
cout<<sex;
cout<<address

h

b

void main()
{

A4 X;

x.get();
X.put();

h

3.14 Virtual base class

« To overcome the ambiguity occurd in multipath inheritance
c++ provides the keyword virtual.

« The keyword virtual declares the specified classes as virtual.

[t can avoid the duplication of member variables defined in the
base classes.

Example:
#include<iostream.h>
#include<conio.h>
class Al

{

protected:

int age;

char name[20];

o

class A2:public virtual Al
{

protected:

float height;

float weight;

}
class A3:public virtual Al

{

protected:

char sex;

o

class A4d:public A2,A3
{

protected:

char address[20];

Public:

void get()

{

cin>>age>>name;
cin>>height>>weight;
cin>>sex;
cin>>address;

}

void put()

{

cout<<age<<name;
cout<<height<<weight;
COUt<<Sex;
cout<<address;

1

void main()

{

A4 X;
x.get();
X.put();
}

3.15 Abstract classes

When a class is not used for creating object is called abstract
classes.

The abstract classes can act as a base class. It is the layout
abstraction in a program and it allows the base class on several
levels of inheritance.

An abstract classes developed only to act as a base class for
Inheriting the properties and no object of these classes are
declared.

Simple inheritance

Example:

#include <iostream.h>
#include<conio.h>
class ABC

{

protected:

int age;

char name[20];

o

class abc:public ABC
{

float height,weight:
public:

void get data()

{

cin>>age>>name;
cin>>height>>weight;

¥
void display()

{

cout<<age<<name;
cout<<height<<weight;

1

volid main()
{

abc X;

X.get data();

x.display();
}

