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1 Introduction: what is abstract algebra and why study groups?

To abstract something means to remove context and application. Modern mathematics largely in-
volves studying patterns and symmetries (often observed in the real world) abstractly so as to ob-
serve commonalities between structures in seemingly distinct places.
One reason to study groups is that they are relatively simple: a set and a single operation which
together satisfy a few basic properties. Indeed you’ve been using this structure since Kindergarten!

Example 1.1. The integers Z = {. . . ,−1, 0, 1, 2, 3, . . .} together with the operation + form a group.

We’ll see a formal definition shortly, at which point we’ll be able to verify that (Z,+) really is a
group. The simplicity of the group structure means that it is often used as a building block for
more complicated structures.1 Other reasons to study groups are their ubiquity and multitudinous
applications. Here are just a few of the places where the language of group theory is essential.

Permutations In mathematics, the word group was first used to describe the ways in which a set
could be reordered, or permuted. Understanding permutations is of crucial importance to many
areas of mathematics, particularly combinatorics, probability and Galois theory: this last, the
crown jewel of undergraduate algebra, develops a deep relationship between the solvability of
a polynomial and the permutation group of its set of roots.

Geometry Figures in Euclidean geometry (e.g. triangles) are congruent if one may be transformed
to the other by an element of the Euclidean group (a translation, rotation or reflection). More gen-
eral geometries may also be described by their groups of symmetries. Groups may also be
employed to describe geometric properties: for example, the number of holes in an object (a
sphere has none, a torus one, etc.) is related to the structure of its fundamental group.

Chemistry Group Theory may be applied to describe the symmetries of molecules and of crystalline
substances.

Physics Materials science sees group theory similarly to chemistry. Modern theories of the nature of
the universe and fundamental particles/forces (e.g. gauge/string theories) also rely heavily on
groups.

Of course, the best reason to study groups is simply that they’re fun!

1For instance, the set of integers Z together with the two basic operations of addition and multiplication is a ring, as
you’ll study in a later course.
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2 Group Axioms and Basic Examples

In this chapter we define our main objects of study and introduce some of the vocabulary and stan-
dard examples used throughout the course. The “Key concepts/definitions” listed at the start of each
Exercise set summarize these.

2.1 The Axioms of a Group

Definition 2.1 (Closure). Let G be a set and ∗ a function ∗ : G × G → G. We describe this arrange-
ment in four different ways, though all mean exactly the same thing:

(a) ∀x, y ∈ G, x ∗ y ∈ G (b) G is closed under ∗.

(c) ∗ is a binary operation on G. (d) (G, ∗) is a binary structure.

In abstract situations (including most theorems) we typically drop the ∗ symbol and use juxtaposition
(x ∗ y = xy). In explicit examples this might be a bad idea, say if ∗ is addition. . .

Examples 2.2. 1. Addition (+) is a binary operation on the set of integers Z:

Given x, y ∈ Z, we know that x + y ∈ Z

This isn’t a claim you can prove, since it is really part of the definition of integer addition.

2. Subtraction (−) is not a binary operation on the positive integers N = {1, 2, 3, 4, . . .}. This you
can prove; to show that condition (a) is false, we exhibit a counter-example

1 − 7 = −6 ̸∈ N (∃x, y ∈ N such that x − y ̸∈ N)

On the integers, however, subtraction is a binary operation: Z is closed under −.

3. On a small set, it can be convenient to represent a binary operation in tabular
form. The given table describes an operation ∗ on a set of three elements
G = {e, a, b}. Read the left column first, then the top row: for instance,

a ∗ b = e, or simply ab = e

∗ e a b
e e a b
a a e e
b b e a

We’ll continue checking these examples for each of the remaining axioms.

Definition 2.3 (Associativity). A binary structure (G, ∗) is associative if

∀x, y, z ∈ G, x(yz) = (xy)z

If ∗ is associative, then the expression xyz has unambiguous meaning, as does exponential notation:
xn = x · · · x (n factors).

Examples (2.2, ver. II). 1. Addition is associative: x + (y + z) = (x + y) + z for any integers.

2. (Z,−) is non-associative: e.g. (1 − 3)− 2 = −4, but 1 − (3 − 2) = 0.

3.
(
{e, a, b}, ∗

)
, described in the table, is non-associative: e.g. a(bb) = aa = e, but (ab)b = eb = b.
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Definition 2.4 (Identity). A binary structure (G, ∗) has an identity element e ∈ G if

∀x ∈ G, ex = xe = x

Examples (2.2, ver. III). 1. Addition on Z has identity 0, since 0 + x = x + 0 = x for any integer x.

2. (Z,−) does not have an identity: if e − x = x, then e = −2x would depend on x!

3.
(
{e, a, b}, ∗

)
has identity e: observe the first row and column of the table.

If G is finite and has an identity (e.g. Example 2.2.3), convention dictates that we list it first. Indeed,
we can always list it first, since. . .

Lemma 2.5 (Uniqueness of identity). A binary structure (G, ∗) has at most one identity.

It is now legitimate to refer to the identity e. Uniqueness proofs in mathematics often follow a stan-
dard pattern: suppose there are two such objects and show that they are identical.

Proof. Suppose e, f ∈ G are identities. Then

e f =

{
f since e is an identity
e since f is an identity

Since f = e, there is only one identity.

We used almost nothing about (G, ∗); in particular it need not be associative (e.g. Example 2.2.3).

Definition 2.6 (Inverse). Suppose a binary structure (G, ∗) has identity e. An element x ∈ G has an
inverse y ∈ G if

xy = yx = e

Examples (2.2, ver. IV). 1. Every integer x has an inverse under addition: x+(−x) = (−x)+ x = 0.

2. Since (Z,−) has no identity, the question of inverses is irrelevant.

3. Since ee = aa = ab = ba = e, we see that every element has an
inverse; indeed a has two inverses!

Element e a b
Inverses e a, b a

Lemma 2.7 (Uniqueness of inverses). Suppose a binary structure (G, ∗) is associative and has an
identity. If an element x ∈ G has an inverse, then said inverse is unique.

Proof. Suppose x has inverses y, z ∈ G. By associativity,

z(xy) = (zx)y =⇒ ze = ey =⇒ z = y

In such a situation it is legitimate to write x−1 (or −x) for the inverse of x. Example 2.2.3 shows that
associativity is necessary: a non-associative binary structure can have non-unique inverses.
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Definition 2.8 (Commutativity). Let (G, ∗) be a binary structure. Elements x, y ∈ G commute if
xy = yx. We say that ∗ is commutative if all elements commute:

∀x, y ∈ G, xy = yx

Examples (2.2, ver.V). 1. Addition of integers is commutative: ∀x, y ∈ Z, x + y = y + x.

2. Subtraction of integers is non-commutative: e.g. 2 − 3 ̸= 3 − 2.

3. The relation is commutative since its table is symmetric across the main ↘ diagonal.

To obtain our main definition simply assemble the pieces!

Definition 2.9 (Group axioms). A group G is a binary structure (G, ∗) satisfying the associativity and
identity axioms, and for which all elements have inverses. This is summarized by the mnemonic

Closure, Associativity, Identity, Inverse

The order of a group is the cardinality (size) |G| of the underlying set.2

In addition, a group G is said to be abelian if the operation ∗ is commutative.

In a multiplicative group, the operation is written multiplicatively or using juxtaposition (includes
composition of functions). A group is additive3 if the operation is addition. Abstract groups are
almost always written multiplicatively.

Examples (2.2, ver.VI). 1. (Z,+) is an infinite, abelian, additive group. Precisely the same observa-
tions show that (Q,+), (R,+) and (C,+) are also.

2. (Z,−) is not a group since subtraction is neither associative, nor has an identity (nor inverses).

3. This binary relation is non-associative and so does not define a group.

While it is common practice to refer to a set G as a group, you should do so only if the operation ∗ is
obvious to everyone. Writing “Z is a group under addition,” is safer than “Z is a group:” it might be a
group under many different operations!

Examples 2.10. 1. The non-zero real numbers R× form an abelian group under multiplication.

Closure If x, y ̸= 0, then xy ̸= 0
Associativity ∀x, y, z, x(yz) = (xy)z
Identity 1 ∈ R× is the identity since, for any x ̸= 0, we have 1 · x = x · 1 = x
Inverse Given x ̸= 0, observe that x−1 = 1

x is an inverse: x · 1
x = 1

x · x = 1
Commutativity If x, y ̸= 0, then xy = yx

As with addition of integers, we cannot prove these claims since they are part of the definition
of multiplication. Similarly, (Q×, ·) and (C×, ·) are abelian groups.

2A finite group has finite order, while an infinite group has infinite order; unless absolutely necessary, it is rare to be
specific about infinite cardinalities (countable, uncountable, etc.).

3These are distinctions only of notation. For instance x + x + x = 3x in an additive group corresponds to xxx = x3 in a
multiplicative group.

4



2. The set of even integers 2Z = {2z : z ∈ Z} forms an abelian group under addition.

3. The set of odd integers 1 + 2Z = {1 + 2n : n ∈ Z} does not form a group under addition since
they are not closed. For instance, 1 + 1 = 2 ̸∈ 1 + 2Z.

4. Every vector space is an abelian group under addition.

5. (R, ·) is not a group since 0 has no multiplicative inverse. Similarly (Q, ·), (C, ·) are not groups.

6. A Cayley table4 is a tabular representation of a (small)
group. Groups of orders 1, 2 and 3 are shown. The one-
element group {e} is often called the trivial group.
Note the magic square (sudoku) property: each row/column
contains every element exactly once (see Exercise 11).

∗ e

e e

∗ e a

e e a
a a e

∗ e a b

e e a b
a a b e
b b e a

Theorem 2.11 (Cancellation laws & inverses). Suppose G is a group and that x, y, z ∈ G. Then

1. xy = xz =⇒ y = z 2. xz = yz =⇒ x = y 3. (xy)−1 = y−1x−1

Part 3 should remind you of matrix multiplication.

Proof. Parts 1 & 2 are exercises. For part 3, multiply out using associativity:

(y−1x−1)(xy) = y−1(x−1x)y = y−1ey = y−1y = e

Similarly (xy)(y−1x−1) = e. Thus y−1x−1 is the inverse of xy (unique by Lemma 2.7).

Exercises 2.1. Key concepts/definitions/examples: make sure you can state the formal definitions.

Group (closure, associativity, identity, inverse) Commutativity/abelian Cayley table

1. Given the binary operation table, calculate

(a) c ∗ d (b) a ∗ (c ∗ b)

(c) (c ∗ b) ∗ a (d) (d ∗ c) ∗ (b ∗ a)

∗ a b c d
a c d c b
b d c b a
c a d c d
d b a b c

2. The table for a binary operation on the set {a, b, c} is given. Compute
a ∗ (b ∗ c) and (a ∗ b) ∗ c. Does the expression a ∗ b ∗ c make sense?
Why/why not?

∗ a b c
a b c b
b c a a
c b a c

3. Are the binary operations in the previous questions commutative? Explain.

4. (a) Describe (without writing them all out!) all possible binary operation tables on a set of two
elements {a, b}. Of these, how many are commutative?

(b) How many commutative/non-commutative operations are there on a set of n elements?

(Hint: a commutative table has what sort of symmetry?)

4Englishman Arthur Cayley (1821–95) was an early group theorist. Similarly abelian honors the Norwegian Niels Abel
(1802–29), after whom the Abel Prize is named (often considered the Nobel Prize in Mathematics).
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5. Which are binary structures? For those that are, which are commutative and which associative?
Give brief arguments in each case.

(a) (Z, ∗), a ∗ b = a + b + 1 (b) (R, ∗), a ∗ b = 2(a + b)

(c) (R, ∗), a ∗ b = 2a + b (d) (R, ∗), a ∗ b = a
b

(e) (N, ∗), a ∗ b = ab (f) (Q+, ∗), a ∗ b = ab, where Q+ = {x ∈ Q : x > 0}
(g) (N, ∗), a ∗ b = product of the distinct prime factors of ab. Also define 1 ∗ 1 = 1.

(e.g. 42 ∗ 10 = (2 · 3 · 7) ∗ (2 · 5) = 2 · 3 · 5 · 7 = 210)

6. Verify the axioms of an abelian group; if any are false, provide a counter-example.

(a) N under addition. (b) Q under multiplication.

(c) X = {a, b, c} with x ∗ y := y. (d) R3 with the cross/vector product ×.

(e) For each n ∈ R, the set nZ = {nz : z ∈ Z} of multiples of n under addition.

7. (a) Prove the cancellation laws (Theorem 2.11 parts 1 & 2).

(b) True or false? In a group, if xy = e, then y = x−1.

(c) In a multiplicative group G, we can unambiguously write (x−1)n = x−1 · · · x−1︸ ︷︷ ︸
n times

.

For any n ∈ N and x ∈ G, prove that (x−1)n = (xn)−1. By convention, this object is
denoted x−n. How would we write this in an additive group (Footnote 3)?

8. Let G be a group. Prove:

(a) ∀x, y ∈ G, (xyx−1)2 = xy2x−1 (b) ∀x ∈ G, (x−1)−1 = x

(c) G is abelian ⇐⇒ ∀x, y ∈ G, (xy)−1 = x−1y−1

9. Prove or disprove:
(
R \ {1}, ∗

)
is an abelian group, where x ∗ y := x + y − xy.

10. Let U be a set and P(U ) its power set (the set of subsets of X).

(a) Which of the group axioms are satisfied by the union operator ∪ on P(U )?
(b) Repeat part (a) for the intersection operator.

(c) The symmetric difference of sets A, B ⊆ U is the set

A△B := (A ∪ B) \ (A ∩ B)

i. Use Venn diagrams to give a sketch argument that △ is associative on P(U ).
ii. Is

(
P(U ),△

)
a group? Explain your answer.

11. (Magic Square) Suppose (G, ∗) is associative and that G is finite.

Prove that (G, ∗) is a group if and only if its (multiplication) table satisfies two conditions:

i. One row and column (by convention the first) is a perfect copy of G itself.

ii. Every element of G appears exactly once in each row and column.
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2.2 Subgroups

The prefix sub- in mathematics usually indicates a subset that retains the indicated structure.

Definition 2.12 (Subgroup). Let G be a group. A subgroup of G is a non-empty subset H ⊆ G which
remains a group with respect to the same binary operation. We write H ≤ G.
A subgroup H is a proper subgroup if H ̸= G. This is written H < G.
The trivial subgroup of G is the 1-element set {e}; all other subgroups are non-trivial.

Examples 2.13. The following should be immediate from the definition: all you need is a non-empty
subset that remains a group!

1. {e} ≤ G and G ≤ G for any group G 2. (Z,+) < (Q,+) < (R,+) < (C,+)

3. (Q×, ·) < (R×, ·) < (C×, ·) 4. (Rn,+) < (Cn,+) 5. (2Z,+) < (Z,+)

4. (Rm,+) ≤ (Rn,+) if m ≤ n. For instance, with respect to the standard basis, Rm consists of all
column vectors in Rn whose last n − m entries are zero.

5. (C(R),+) < (C1(R),+). Think back to calculus: the sub of any two continuous functions is
continuous; every differentiable function is continuous; etc., etc.

Thankfully one doesn’t have to check all the group axioms to see that a subset is a subgroup.

Theorem 2.14 (Subgroup criterion). Let G be a group. A non-empty subset H ⊆ G is a subgroup if
and only if it is closed and has inverses in H (with respect to the group operation on G):

∀h, k ∈ H, hk ∈ H and h−1 ∈ H (∗)

Proof. (⇒) H is a group and therefore satisfies all the axioms, including closure and inverse.

(⇐) By assumption, H satisfies the closure axiom. Moreover, the group operation on G is automati-
cally associative on any subset,5 including H. It remains to verify that the identity element e (of
G) lies in H, for then our assumption (h−1 ∈ H) says that that inverse axiom is also satisfied.

Since H ̸= ∅, we may choose some (any!) h ∈ H. By (∗), h−1 ∈ H. A second application of (∗)
finishes things off:

e = hh−1 ∈ H

Examples 2.15. 1. All of Examples 2.13 can be confirmed using the theorem. For instance, part 5:

Non-empty subset: plainly 2Z = {. . . ,−2, 0, 2, 4, . . .} = {2z : z ∈ Z} is such (of Z).
Closure: 2m, 2n ∈ 2Z =⇒ 2m + 2n = 2(m + n) ∈ 2Z.
Inverses: 2m ∈ 2Z has inverse −(2m) = 2(−m) ∈ 2Z.

2. The positive integers N are closed under addition but do not satisfy the inverse axiom (for
instance, no x ∈ N satisfies x + 2 = 0). Thus (N,+) is not a subgroup of (Z,+).

5Associativity does not care where x(yz) = (xy)z lives: “∈ G” does not appear in Definition 2.3!
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3. Denote by 1 + 3Z the set of integers with remainder 1 when divided by 3:

1 + 3Z =
{

1 + 3n : n ∈ Z
}
=

{
1, 4, 7, 10, 13, . . . ,−2,−5,−8, . . .

}
Since 1 ∈ 1 + 3Z but 1 + 1 = 2 ̸∈ 1 + 3Z, we see that 1 + 3Z is not a subgroup of (Z,+).

4. The circle group S1 :=
{

eiθ : θ ∈ [0, 2π)
}

is plainly a non-empty subset of (C×, ·). The standard
exponential laws and the fact that e2πi = 1 verify that S1 is in fact a subgroup.

Closure: eiθeiψ = ei(θ+ψ) ∈ S1 (equals e(θ+ψ−2π)i if you feel it necessary).

Inverses: (eiθ)−1 = e−iθ = e(2π−θ)i.

Subgroup Diagrams It can be helpful to represent subgroup relations pictorially,
using descending lines. For instance, the diagram on the right summarizes the sub-
group relations

6Z < 2Z < Z, 6Z < 3Z < Z, 6Z < Z

Z

2Z 3Z

6Z

where all four groups under addition. If G has only finitely many subgroups, then its subgroup
diagram is the complete depiction of all subgroups.

Exercises 2.2. Key concepts: (Proper/trivial/non-trivial) Subgroup

Subgroup criterion (non-empty subset, closure, inverses) Subgroup diagram

1. Use the subgroup criterion to verify that Q× is a subgroup of R× under multiplication.

2. Give two reasons why the non-zero integers do not form a subgroup of Z under addition.

3. Describe/explain the relationship between positive integers m and n if (mZ,+) ≤ (nZ,+).

4. Prove or disprove: the set H = { a
2n : a ∈ Z, n ∈ N0} forms a group under addition.

5. Briefly explain why “subgroup” is transitive: that is, if K ≤ H and H ≤ G, then K ≤ G.

6. Suppose H and K are subgroups of G. Prove that H ∩ K is also a subgroup of G.

7. Let H be a non-empty subset of a group G. Prove that H is a subgroup of G if and only if

∀x, y ∈ H, xy−1 ∈ H

8. (Hard) On an abstract set Q8 = {±1,±i,±j,±k} of eight elements, we define an operation
(’multiplication’) using several properties:

• 1 is the identity.
• −1 commutes with everything in the expected way: e.g. −i = (−1)i = i(−1), etc.
• (−1)2 = 1, i2 = j2 = k2 = −1 and ij = k.
• Multiplication is associative.

(a) Prove that (Q8, ·) is a non-abelian group by completing its Cayley table.
(Hint: You should easily be able to fill in 44 of 64 entries; now use associativity. . . )

(b) Find all subgroups of Q8 and draw its subgroup diagram.
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2.3 Modular Arithmetic

Many commonly encountered examples in abstract algebra make use of modular arithmetic: the ad-
dition and multiplication of remainders. Such arithmetic should be at least somewhat familiar so we
offer only a brief refresher. At present, these groups are very informal and are introduced primarily
to supply examples; more rigorous discussions will be given in Chapters 3 & 5.

Definition 2.16. Let n be a positive integer. We denote by Zn the set of equivalence classes of integers
modulo n. These are typically written as remainders (i.e., as integers),

Zn = {0, 1, . . . , n − 1}

where x = y ∈ Zn means that the integers x, y have the same remainder on division by n.

More formally,6 x = y ∈ Zn means x ≡ y (mod n), or equivalently x = y + λn for some integer λ.

Example 2.17. In the most commonly used notation, we write Z5 = {0, 1, 2, 3, 4}. Several other
notations are available. For instance, here is a calculation written in four different ways (note that
6 = 1 in Z5 because they both have the same remainder 1 on division by 5):

(a) Group/Number Theory style: 4 + 2 = 6 = 1 in Z5.

(b) Modular arithmetic: 4 + 2 ≡ 6 ≡ 1 (mod 5).

(c) Decorated operation: 4 +5 2 = 6 = 1.

(d) Equivalence classes: [4] +5 [2] = [6] = [1].

For reasons of brevity we mostly use notation (a), though feel
free to use another if it makes you more comfortable. Regard-
less of notation, you must make it clear in which Zn you are
working: 4 + 2 = 1 is not acceptable on its own!

[0] = {. . . , 0, 5, 10, . . .}

[1]

=
{.

. .
,−

4,
1,

6,
. .

.}

[2]

=
{..

.,−
3,2,7,..

.}

[3]={...,−2,3,8,...}

[4]

=
{. . . ,−

1, 4, 9, . . .}

+1

+1

+1

+1

+1

Theorem 2.18. Zn forms an abelian group of order n under addition modulo n.

A rigorous proof (in the language of Footnote 6) is tedious, but will come for free in Chapter 5 when
Zn is properly defined as a factor group. These groups are so common that we usually just state “The
group Zn,” rather than (Zn,+n). In the exercises, we’ll also consider how multiplication modulo n
can be used to create groups of remainders.

6An element of Zn is strictly an equivalence class: for instance, [x] ∈ Zn denotes the class of all integers with the same
remainder as the representative x ∈ Z:

[x] =
{

z ∈ Z : x ≡ z (mod n)
}
=

{
. . . , x − n, x, x + n, x + 2n . . .

}
= {x + kn : k ∈ Z} = x + nZ

Addition of equivalence classes is well-defined (multiplication similarly): if [x] = [w] and [y] = [z], then w = x + κn and
z = y + λn, from which

[w] +n [z] = [w + z] =
[
(x + κn) + (y + λn)

]
=

[
x + y + n(κ + λ)

]
= [x + y] = [x] +n [y]

While it is important to appreciate that the elements of Zn are not really numbers, the tediousness of this formal language
means that it is usually avoided. Equivalence classes and well-definition are not critical right now, but will become so later.
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Examples 2.19. Here are the Cayley tables for Z1, Z2, Z3 and Z4.

+1 0
0 0

+2 0 1
0 0 1
1 1 0

+3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

In each case 0 is the identity element. If you compare these to the the tables in Example 2.10.6, the
patterns should look familiar (we will explore this further in Section 2.5).

Subgroups of Zn

It is easy to spot certain subgroups of Zn — just think about divisors of n!

Example 2.20. Plainly 2 is a divisor of 4. By covering up the rows/columns corresponding to 1 and
3, we obtain the Cayley table for the subgroup H = {0, 2} of Z4.

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

−→
+4 0 2
0 0 2
2 2 0

Hopefully it is obvious why H is a subgroup (think about the subgroup criterion Theorem 2.14!).
Now suppose 1 were in some subgroup K ≤ Z4 and consider what the group axioms tell us:

Closure =⇒ 2 = 1 + 1 ∈ K
Inverse =⇒ 3 = −1 ∈ K
Identity =⇒ 0 ∈ K

 =⇒ K = {0, 1, 2, 3} = Z4

The same thing happens if a subgroup contains 3. The upshot is that Z4 has precisely three
subgroups: itself, {0, 2} and the trivial subgroup {0}. The full subgroup diagram is drawn.

Z4

{0, 2}

{0}

Here is a more general version. Suppose d is a divisor of n, write n = dk, and consider the subset of
multiples of d in Zn:

⟨d⟩ =
{

0, d, 2d, . . . , (k − 1)d
}

In the language of the subgroup criterion (Theorem 2.14), this set is:

Non-empty: Plainly 0 ∈ ⟨d⟩.
Closed under addition: κd + λd = (κ + λ)d ∈ ⟨d⟩.
Closed under inverses: The inverse of λd is −λd = (k − λ)d ∈ ⟨d⟩.

We have therefore proved:

Lemma 2.21. If d is a divisor of n, then the set of multiples ⟨d⟩ in Zn is a subgroup of order n
d .

As in Example 2.20, in Chapter 3 we’ll see that these are in fact the only subgroups of Zn.
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Exercises 2.3. Key concepts: Zn, Multiples as subgroups: d | n =⇒ ⟨d⟩ ≤ Zn

1. Refresh your memory of modular arithmetic by evaluating the following:

(a) 17 + 22 in Z30 (b) 31 · 4 in Z12

(c) 56 in Z14, (d) 192 − 42 · 13 in Z17

2. State the Cayley tables for the groups Z5 and Z6 (more formally (Z5,+5) and (Z6,+6)).

3. State the Cayley tables for all proper subgroups of Z6. Now draw the full subgroup diagram
for Z6.

(Hint: consider Lemma 2.21 and the remark that follows)

4. Draw the subgroup diagram for Z12.

5. Suppose n is a positive integer ≥ 2.

(a) Explain why Zn is not a group under multiplication. If you’re unsure what to do, consider
an example: what is the multiplication table for (Z3, ·)?

(b) Explain why {1, 2, 3, 4, 5} isn’t a group under multiplication modulo 6.

(c) Hypothesize for which integers n ≥ 2 the set {1, 2, 3, . . . , n − 1} forms a group under
multiplication modulo n. If you want a challenge, try to prove your assertion.

6. The set Z×
n denotes the units in Zn, those elements which are relatively prime to n:

Z×
n =

{
x ∈ Zn : gcd(x, n) = 1

}
In part (d), we verify that Z×

n is an abelian group under multiplication modulo n.

(a) Construct the Cayley tables for the groups Z×
3 = {1, 2} and Z×

4 = {1, 3}.

(b) Construct the Cayley table for the group Z×
5 = {1, 2, 3, 4}. Now identify its subgroups.

(c) Construct the Cayley tables for Z×
8 and Z×

9 . What is the order of each group?

(d) (Hard) Prove that Z×
n forms an abelian group under multiplication modulo n by verifying

the group axioms.
(Hint: Recall Bézout’s identity gcd(x, n) = 1 ⇐⇒ ∃κ, λ ∈ Z such that κx + λn = 1)

(e) i. Compare the orders of the groups Z×
3 , Z×

4 and Z×
12. What do you observe?

ii. What about the orders of Z×
2 , Z×

6 and Z×
12? What is going on?

iii. The order of Z×
n is the value of Euler’s totient function ϕ(n). Research some of the prop-

erties of this function: can you find something that helps explain your observations in
parts i and ii? Better still, take a course in Number Theory!

11



2.4 Geometric Symmetries & Matrix Groups

Geometric symmetries an matrices provide further large families of groups.
Now consider any geometric figure that has some symmetry (typically viewed as rotational or re-
flective), such as a triangle, square, or tetrahedron. Each symmetry corresponds to a function that
transforms the original figure in such a way that the result occupies the same location as the original.

Example 2.22 (Klein four-group). The pictured rectangle has three obvious symmetries:

(a) Rotation by 180°.

(b) Vertical reflection.

(c) Horizontal reflection.

a

c

b

Each symmetry may be viewed as a function transforming the rectangle (or permuting its ver-
tices/edges if you prefer). Group Theorists also consider the identity function e as a symmetry: it
simply leaves the rectangle alone.7

It should be clear that the set V := {e, a, b, c} comprises every symmetry of the rectangle. We claim
that V forms a group whose binary operation is composition of functions.

Closure After applying any two symmetries in sequence, the rectangle still occu-
pies the same location on the page, the result of applying a single symmetry.
The composition table is shown and is easily be verified by, for instance,
drawing a smiley face on one side of a sheet of paper.

◦ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Original Face on back Face up

c b

a

The pictures confirm b ◦ c = a: remember that the right side comes first when composing
functions! The diagonal symmetry of the table shows that the operation is commutative.

Associativity Composition of functions is always associative (Exercise 9).

Identity The function e leaves the rectangle alone. Plainly e ◦ f = f ◦ e = f for any symmetry f .

Inverse To find the inverse of a symmetry, simply undo what you just did! In the case of the rectan-
gle, every symmetry is its own inverse.

The symmetries of the rectangle thus form an abelian group of order 4. This is named the Klein
four-group in honor of Felix Klein, a 19th century German mathematician whose application of group
theory transformed modern geometry. The letter V comes from the original German: vierergruppe.

7There is little benefit to being explicit, but if you choose co-ordinates with the origin at the center of the rectangle, these
functions can be written formulaically:

e(x, y) = (x, y), a(x, y) = (−x,−y), b(x, y) = (x,−y), c(x, y) = (−x, y)

12



A similar discussion applies to any geometric figure.

Theorem 2.23. The symmetries of any geometric figure form a group under composition.
The orientation-preserving symmetries form a subgroup, often called the rotation group.8

Example (2.15.4, cont.). Since the complex function z 7→ eiθz rotates counter-clockwise by θ around
the origin, the circle group S1 may be viewed as the group of rotations of the plane (or the circle).

Definition 2.24. A regular n-gon has two commonly associated symmetry groups.

Dihedral Group The full symmetry group Dn has order 2n. It splits into two subsets of size n:

Rotations Labelled e, ρ1, . . . , ρn−1 where ρk rotates counter-clockwise by 2πk
n radians ( 360k

n °). The
identity e = ρ0 is considered a rotation (by 0°).

Reflections These are typically labelled µk or δk.

Rotation group Denoted Rn = {e, ρ1, . . . , ρn−1}. This group is abelian, which follows because com-
position of rotations simply sums angles:

ρj ◦ ρk = ρj+k (mod n) = ρk+j (mod n) = ρk ◦ ρj

Example 2.25. Denote the elements of the dihedral group D3 as in the picture, where labeling the
vertices 1, 2, 3 helps to keep track of things:

D3 =
{

e, ρ1, ρ2, µ1, µ2, µ3
}

Its Cayley table is below. Constructing the table from scratch is a lot
of work and is not worth memorizing!
The highlighted computation is µ1 ◦ ρ2 = µ3 (remember to ’do’ ρ2
to the triangle first!). To verify, we could again try the smiley face
trick, or alternatively consider the movement of a vertex:

ρ2 moves vertex 1 to vertex 3; µ1 moves this to vertex 2.
Since the composition of a rotation and a reflection is a
reflection (the triangle has been flipped over once!), the
result must be the reflection mapping 1 7→ 2, namely µ3.

The lack of symmetry in the Cayley table shows that D3 is a non-
abelian group: indeed

ρ2 ◦ µ1 = µ2 ̸= µ3 = µ1 ◦ ρ2

1 2

3

µ1µ2

µ3

ρ1ρ2

◦ e ρ1 ρ2 µ1 µ2 µ3

e e ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 e µ3 µ1 µ2

ρ2 ρ2 e ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 e ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 e ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 e

The Cayley table for the (abelian) rotation group R3 = {e, ρ1, ρ2} is visible in the top left corner.

8In low dimensions, orientation-preserving means that a transformation doesn’t change the usual right-hand rule (e.g.,
cross products). In two dimensions these are precisely the planar rotations. In three dimensions a general orientation-
preserving symmetry is the composition of two pure rotations (recall spherical polar co-ordinates).

13



Geometric Subgroup Relations

These are often straightforward to observe by drawing two shapes in such a way that all the symme-
tries of one are also symmetries of the other. Since the symmetries of both shapes form a group, this
pictorial approach justifies the only necessary condition in Definition 2.12: the subset property.

Examples 2.26. 1. For any n, we see that Rn < S1: every rotation of a regular n-gon is also a rotation
of a circle (with the same center).

2. Consider a regular hexagon, inside which have been drawn two equilateral triangles. Every
symmetry of either triangle is also a symmetry the hexagon. We conclude:

µ1

µ3µ5

ρ2ρ4

µ2

µ4

µ6

ρ2ρ4

(a) R3 < R6. Be careful with notation! With respect to the hexagon, ρk is rotation counter-
clockwise by 60k°, whence the subgroup relation should be written

R3 = {e, ρ2, ρ4} < R6 = {e, ρ1, ρ2, ρ3, ρ4, ρ5}

Also note that both triangles have the same rotation group.

(b) D3 < D6. This is a little more complicated. Labeling the reflections µ1, . . . , µ6 as in the
picture, we see that the two triangles actually have different (full) symmetry groups:

DI
3 = {e, ρ2, ρ4, µ1, µ3, µ5} < D6 and DI I

3 = {e, ρ2, ρ4, µ2, µ4, µ6} < D6

Otherwise said, D6 has two distinct subgroups that look like D3.

Matrix Groups

As observed in any elementary linear algebra course (see also Exercise 10), matrix multiplication is
associative. This quickly yields several examples.

Example 2.27. The general linear group comprises the invertible n × n matrices under multiplication.
For this course, only such matrices with real number entries will be encountered:

GLn(R) =
{

A ∈ Mn(R) : det A ̸= 0
}

(non-abelian when n ≥ 2)

Since associativity holds in general, we need only verify the other three axioms.
Closure follows from the familiar result det AB = det A det B.
The identity (drum roll. . . ) is the identity matrix I.
Finally, invertibility is assumed. Part 3 of Theorem 2.11 should now seem very
familiar: (xy)−1 = y−1x−1.

I =


1 0

0 1
. . .

. . . . . . 0
0 1


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Matrix subgroups

The general linear group GLn(R) has many subgroups. Here is one; some others are in the Exercises.

Example 2.28. The orthogonal group On(R) = {A ∈ Mn(R) : AT A = I} consists of those matrices
whose inverse equals their transpose (A−1 = AT). We verify that this is a subgroup of GLn(R) using
the subgroup criterion (Theorem 2.14) and simple matrix properties.

Non-empty subset Every orthogonal matrix is invertible, whence On(R) ⊆ GLn(R). This is imme-
diate in two ways: if A ∈ On(R), then,

AT A = I =⇒ A−1 = AT exists, or,

1 = det I = det A det AT = (det A)2 =⇒ det A ̸= 0

Moreover, IT I = I2 = I, so I ∈ On(R): we have non-emptiness.

Closure Suppose A, B ∈ On(R). Then

(AB)T(AB) = BT AT AB = BT IB = BTB = I =⇒ AB ∈ On(R)

Inverses Suppose A ∈ On(R). Then

(A−1)T A−1 = (AT)T AT = (AAT)T = IT = I =⇒ A−1 ∈ On(R)

The 2× 2 orthogonal matrices can be interpreted as rotations and reflections.9 For instance, the matrix
1√
2

(
1 −1
1 1

)
∈ O2(R) rotates the plane counter-clockwise by 45°.

Exercises 2.4. Key concepts: Klein 4-group V Dihedral group Dn Rotation group Rn

Geometric subgroup relations General linear group GLn(R)

1. Use Theorem 2.14 to explain why the set of rotations of a planar figure is a subgroup of its full
symmetry group (rotations and reflections).

2. Explicitly state the Cayley table for the rotation group R4 of a square.

3. Find the subgroup diagram of the Klein four-group. Explain how you know you are correct.

4. Repeat the previous question for the rotation group R6.

5. (a) Find all subgroups and the subgroup diagram for the group D3.
(Don’t worry about being rigorous as to how you know you’ve found them all.)

(b) Describe the symmetry group and Cayley table of a non-equilateral isosceles triangle. What
about a scalene triangle?

9You might have seen this in another course. Left-multiplication by:

•
(

cos θ − sin θ
sin θ cos θ

)
rotates vectors counter-clockwise by θ radians.

•
(

cos θ sin θ
sin θ − cos θ

)
reflects across the line making angle θ/2 with the positive real axis.

This interpretation allows us to view Dn as a subgroup of O2(R).
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6. (a) Represent the elements of the Klein four-group V (as in Footnote 7) using matrix notation
(i.e. a is left-multiplication by what matrix). As such, identify V as a subgroup of O2(R).

(b) Modeling Example 2.26, draw three pictures which describe different ways in which V
may be viewed as a subgroup of D6.

7. Determine whether each of the following sets of matrices is a group under multiplication.

(a) K = {A ∈ M2(R) : det A = ±1} (b) L = {A ∈ M2(R) : det A = 7}
(c) N =

{(
a b
0 d

)
∈ M2(R) : ad ̸= 0

}
8. Prove that each set of matrices forms a group under multiplication (don’t memorize these—

unless you really love matrices. . . ).

(a) Special linear group: SLn(R) =
{

A ∈ Mn(R) : det A = 1
}

(b) Special orthogonal group: SOn(R) = {A ∈ Mn(R) : AT A = I and det A = 1}
(c) Qn =

{
A ∈ Mn(R) : det A ∈ Q×}

(d) (Hard) SLn(Z) =
{

A ∈ Mn(Z) : det A = 1
}

: all entries in these matrices are integers.
(Hint: look up the classical adjoint adj A of a square matrix)

Now construct a diagram showing the subgroup relationships between the groups

GLn(R), SLn(R), On(R), SOn(R), Qn, SLn(Z)

9. (a) Let X be any set. Prove that composition of functions f : X → X is associative.
(Hint: ( f ◦ g) ◦ h = f ◦ (g ◦ h) means that both functions do the same thing to the same input. . . )

(b) Suppose X contains at least two distinct elements a ̸= b. Prove that there exist functions
f , g : X → X for which f ◦ g ̸= g ◦ f .

10. (a) Prove that matrix multiplication of (real square) matrices is associative.
(Hint: If A has entries (aij), etc., what are the pqth entries of the matrices A(BC) and (AB)C?)

(b) Show that multiplication of (invertible) n × n matrices is non-commutative when n ≥ 2.

11. Prove that Dn is non-abelian (n ≥ 3).

(Hint: label vertices and proceed as is Example 2.25)

12. Consider rotating (in 3D) a regular tetrahedron. Any face (equilat-
eral triangle) may be rotated to its desired location (four options),
in which it has three possible orientations. The rotation group of
the tetrahedron therefore has 4 × 3 = 12 elements.

(a) Find the order of the rotation group of a cube.

(b) Repeat for a regular octahedron. Give a geometric reason
why your answer is the same as part (a).

(Hint: Try joining the midpoints of each face. . . ).

(c) What about the dodecahedron and the icosahedron?!
Common polyhedral dice

In case you don’t recognize it, the pictured red die is not one of the five Platonic solids: it has
ten rhombus-shaped faces, and its rotation group has order 10. We’ll return to these examples
in later sections.
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2.5 Homomorphisms & Isomorphisms

In the previous sections, you should have felt like you were encountering similar examples in dif-
ferent contexts. A key goal of abstract mathematics is the comparison of similar/identical structures
with outwardly different appearances. The standard approach to such comparison is uses functions.

Example 2.29. Compare the rotation group R3 of an equilateral triangle to the modular arithmetic
group Z3. Their Cayley tables look almost identical, particularly if we write ρ0 for the identity in R3.
To a mathematician, the groups have the same structure; they are merely labelled differently.
Relabelling means defining an invertible function µ : R3 → Z3:
the obvious choice from looking at the tables is µ(ρk) = k.
Since the tables describe all possible interactions between the
elements of each group, it is clear that µ satisfies

∀ρj, ρk ∈ R3, µ(ρj ◦ ρk) = µ(ρj) +3 µ(ρk)

◦ ρ0 ρ1 ρ2

ρ0 ρ0 ρ1 ρ2

ρ1 ρ1 ρ2 ρ0

ρ2 ρ2 ρ0 ρ1

+3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

(R3, ◦) (Z3,+3)

Indeed, both sides simply equal j +3 k! This is a critical formula. To see why, suppose we are given
remainders x, y ∈ Z3 and consider two courses of action:

1. First combine the remainders x +3 y in Z3, then map to R3 using the function to obtain µ(x +3 y).

2. First map both remainders to R3 using µ, then combine in R3 to obtain µ(x) ◦ µ(y).

Regardless of the order (combine/map or map/combine) we always obtain the same result! Such
structure-preserving functions are at the heart of abstract algebra.

Definition 2.30 (Homo- & Isomorphisms). Suppose (G, ∗) and (H, ⋆) are binary structures and
ϕ : G → H a function. We say that ϕ is a homomorphism of binary structures if

∀x, y ∈ G, ϕ(x ∗ y) = ϕ(x) ⋆ ϕ(y)

An isomorphism10 of binary structures G, H is a bijective/invertible homomorphism µ : G → H.
Binary structures G, H are isomorphic, written G ∼= H, if there exists some isomorphism µ : G → H.

The notation is typical: µ (rather than ϕ) is often used when we know we have an isomorphism. For
most of these notes (certainly after this chapter), all binary structures will be groups.

Examples 2.31. 1. (2.29 cont.) We have isomorphic groups R3 ∼= Z3. Indeed the function µ : R3 → Z3
is an isomorphism of groups (or group isomorphism).

2. The function ϕ : (N,+) → (R,+) defined by ϕ(x) =
√

2x is a homomorphism (of binary
structures: (N,+) is not a group!),

ϕ(x + y) =
√

2(x + y) =
√

2x +
√

2y = ϕ(x) + ϕ(y)

As before, it is worth spelling this out:

Sum then map ϕ(x + y) gives the same result as map then sum ϕ(x) + ϕ(y).

10These terms come from ancient Greek: homo- (similar, alike), iso- (equal, identical), and morph(e) (shape, structure).
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3. If V, W are vector spaces then every linear map T : V → W is a group homomorphism:11

∀v1, v2 ∈ V, T(v1 + v2) = T(v1) + T(v2)

You’ve been encountering homomorphisms your entire mathematical career: for instance, both
the calculus identity d

dx ( f + g) = d f
dx + dg

dx and the distributive law of matrix multiplication
A(x + y) = Ax + Ay are homomorphism properties!

4. (Trivial homomorphism) If G and L are any groups, then the function ϕ : G → L defined by
ϕ(g) = eL (the identity in L) is a homomorphism:

∀x, y ∈ G, ϕ(xy) = eL = (eL)
2 = ϕ(x)ϕ(y)

5. (Inclusion map) If H is a subgroup of G, then ϕ(x) = x defines a homomorphism ϕ : H → G:

∀x, y ∈ G, ϕ(xy) = xy = ϕ(x)ϕ(y)

6. The function ϕ(ρk) = ρ2k (mod 4) is a homomorphism ϕ : R4 → R4:

ϕ(ρj ◦ ρk) = ϕ(ρj+k (mod 4)) = ρ2(j+k) (mod 4) = ρ2j (mod 4) ◦ ρ2k (mod 4)

= ϕ(ρj) ◦ ϕ(ρk)

Establishing Isomorphicity

We must do four things if we suspect binary structures (G, ∗) and (H, ⋆) to be isomorphic:

Definition: Define µ : G → H and, if necessary, verify that it is a function.12

Homomorphism: Verify that µ(x ∗ y) = µ(x) ⋆ µ(y) for all x, y ∈ G.
Injectivity/1–1: Check that µ(x) = µ(y) =⇒ x = y.
Surjectivity/onto: Check range µ = H. Equivalently ∀h ∈ H, ∃g ∈ G such that h = µ(g).

The last three steps can be done in any order, and injectivity/surjectivity can be combined if you
manage to exhibit an explicit inverse function µ−1 : H → G. If you are unsure how to start, often the
best thing is to play with the homomorphism property itself.

Examples 2.32. 1. We show that (2Z,+) and (3Z,+) are isomorphic groups.

Definition: The obvious candidate13 is ϕ(x) = 3
2 x. Plainly ϕ(2n) = 3n whence ϕ : 2Z → 3Z.

Homomorphism: ϕ(x + y) = 3
2 (x + y) = 3

2 x + 3
2 y = ϕ(x) + ϕ(y)

Injectivity: ϕ(x) = ϕ(y) =⇒ 3
2 x = 3

2 y =⇒ x = y.

Surjectivity: If z = 3n ∈ 3Z, then z = 3
2 · 2

3 z = 3
2 (2n) = ϕ(2n) ∈ range ϕ.

The last steps are essentially the observation that ϕ−1(z) = 2
3 z.

More generally, the groups (mZ,+) and (nZ,+) are isomorphic whenever m, n ̸= 0.

11The scalar multiplication condition T(λv) = λT(v) of a linear map is not relevant here.
12If G is a set of equivalence classes, we also need to check that ϕ is well-defined. This subtlety is why we haven’t (yet)

had an example where Zn is the domain of a homomorphism. We will do so later (Example 3.5.2, Theorem 3.7, etc.).

18



2. We prove that (R,+) ∼= (R+, ·): these are isomorphic abelian groups (recall that R+ = (0, ∞)
is the set of positive real numbers).

Definition/Homomorphism: We need a bijective function µ : R → R+ which converts addi-
tion to multiplication µ(x + y) = µ(x)µ(y). But exponentiation does exactly this: defining
µ(x) = ex, we see that the homomorphism property is the familiar exponential law!

µ(x + y) = ex+y = exey = µ(x)µ(y)

Bijectivity: µ−1(z) = ln z is the inverse function of µ.

Other exponential functions also provide suitable isomorphisms: e.g. 2x, 10x, etc.

Demonstrating Non-Isomorphicity (Structural Properties)

Suppose we suspect that binary structures (G, ∗) and (H, ⋆) are non-isomorphic. Unless G, H are very
small, individually verifying that every possible function µ : G → H is a non-isomorphism would
be unrealistic! Instead we consider structural properties: properties that isomorphic structures must
share. If any such is held by one structure but not the other, then the structures are non-isomorphic.
Here is a non-exhaustive list of structural properties; we’ll check some in Exercise 11. Throughout,
we assume that µ : (G, ∗) → (H, ⋆) is an isomorphism.

Cardinality/order: Since G and H are bijectively paired, their cardinalities are the same.

Commutativity & Associativity: Suppose (G, ∗) is commutative and let X, Y ∈ H. Since µ is surjec-
tive, we may write X = µ(x) and Y = µ(y) for some x, y ∈ G. The homomorphism property
now shows that (H, ⋆) is commutative:

X ⋆ Y = µ(x) ⋆ µ(y) = µ(x ∗ y) = µ(y ∗ x) = µ(y) ⋆ µ(x) = Y ⋆ X

The argument for associativity is similar, though more tedious.

Identities & Inverses: If (G, ∗) has identity e, then µ(e) is the identity for (H, ⋆). Similarly µ maps
inverses to inverses.

Solutions to equations: Related equations have the same number of solutions. For instance,

x ∗ x = x ⇐⇒ µ(x) ⋆ µ(x) = µ(x)

says that the equations x ∗ x = x (in G) and z ⋆ z = z (in H) have the same number of solutions.14

Being a group If G is a group, so also is H.

Examples 2.33. 1. Recall that N0 = {0, 1, 2, 3, . . .}. Since (N0,+) contains the identity element 0
whereas (N,+) has no identity, we conclude that these binary structures are non-isomorphic.

2. Z5 is not isomorphic to D3 since the two groups have different orders (5 and 6).

13You might think, “How can I turn an even number into a multiple of three?” Of perhaps you start by thinking about
the homomorphism property: multiplication by a constant certainly satisfies ϕ(x + y) = ϕ(x) + ϕ(y).

14Such solutions are called idempotents; thus existence of idempotents is itself a structural property.

19



3. The binary structures defined by the two tables are non-isomorphic.
For instance, the first is commutative while the second is not.

4. GL2(R) and (R,+) are non-isomorphic for the same reason: the first
is non-abelian and the second abelian.

∗ a b
a a b
b b a

⋆ c d
c c d
d c d

5. To see that (Q,+) and (R,+) are non-isomorphic groups, it is enough to recall that the sets
have different cardinalities: Q is countably infinite while R is uncountable.

6. The groups (Z,+) and (Q,+) have the same (countably infinite) order, and are both abelian. To
see that they are non-isomorphic, consider the equation x + x = 1 which has no solutions in Z.
If µ : Z → Q were an isomorphism, then the equation µ(x) + µ(x) = µ(1) does have a solution
y = µ(x) = 1

2 µ(1) in Q. But then x = µ−1(y) solves the original equation: contradiction!

7. (S1, ·) and (R,+) are non-isomorphic: consider the equations x ∗ x = e. . .

Many properties are non-structural and therefore cannot be used to show non-isomorphicity: the type
of element (number, matrix, etc.), the type of binary operation (addition, multiplication, etc.).

Transferring a Binary Structure

Suppose µ : G → H is a bijection of sets, where one of G, H has a binary structure. A binary structure
may be defined on the other by insisting that µ be an isomorphism.

Example 2.34. The function µ(x) = x3 + 8 is a bijection R → R. Starting with the binary (group)
structure (R,+) and treating µ as an isomorphism, we may create a new isomorphic structure. There
are two ways to do this:

Pull-back: Suppose µ : (R, ∗) → (R,+). Since µ(x ∗ y) = µ(x) + µ(y), the new operation ∗ must be

x ∗ y := µ−1(µ(x) + µ(y)
)
= µ−1(x3 + y3 + 16) = 3

√
x3 + y3 + 8

All structural properties transfer from (R,+) to (R, ∗): for instance, (R, ∗) is an abelian group
with identity element

µ−1(0) = 3
√
−8 = −2

As a sanity check, observe that we really do have x ∗ (−2) = 3
√

x3 + (−2)3 + 8 = x!

Push-forward: View µ : (R,+) → (R, ∗) as an isomorphism. Computation of ∗ is an exercise.

“Up to Isomorphism”

This phrase is ubiquitous in group theory. To illustrate, consider that if
(
{e, a}, ∗

)
is a group with identity e, then its Cayley table must be as shown (Example 2.10.6).
Otherwise said: there may be infinitely many distinct groups of order two, but all are
isomorphic to each other. This is too wordy, so a mathematician might instead say:

∗ e a
e e a
a a e

Up to isomorphism, there is a unique group of order two.

Make sure you include the snippet “up to isomorphism,” for otherwise the sentence is false!
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The start of group theory can feel very challenging. With its focus on functions and its unfamiliar
words, this last introductory section likely seems particularly so. Complete fluency with the vocab-
ulary is not required at this stage. The remaining chapters provide plenty opportunity to reinforce the
language introduced in this chapter.
For the same reason, several of the following Exercises (particularly number 11 onwards) will likely
seem difficult. Try these (and discuss them) now, even if you aren’t sure what to do; return later
when you feel more comfortable. Learning abstract concepts isn’t quick; give the ideas a chance to
sink in. By the end of the course, these Exercises should seem much easier!

Exercises 2.5. Key concepts: Homomorphism Isomorphism Injective/surjective/bijective

Structural property ‘Up to isomorphism’

1. Which of the following are homomorphisms/isomorphisms of binary structures? Explain.

(a) ϕ : (Z,+) → (Z,+), ϕ(n) = −n (b) ϕ : (Z,+) → (Z,+), ϕ(n) = n + 1
(c) ϕ : (Q,+) → (Q,+), ϕ(x) = 4

3 x (d) ϕ : (Q, ·) → (Q, ·), ϕ(x) = x2

(e) ϕ : (R, ·) → (R, ·), ϕ(x) = x5 (f) ϕ : (R,+) → (R, ·), ϕ(x) = 2x

(g) ϕ : (M2(R), ·) → (R, ·), ϕ(A) = det A
(h) ϕ : (Mn(R),+) → (R,+), ϕ(A) = tr A (trace: add the entries on the main diagonal)

2. Show that (Z,+) ∼= (nZ,+) for any non-zero constant n.

3. Prove or disprove: (R3,+) ∼= (R3,×) (cross product).

4. µ(n) = 2 − n is a bijection of Z with itself. For each of the following, define a binary relation ∗
on Z such that µ is an isomorphism.

(a) µ : (Z, ∗) → (Z,+) (b) µ : (Z, ∗) → (Z, ·) (c) µ : (Z, ∗) → (Z, max(a, b))

5. Finish Example 2.34 by computing the push-forward X ∗ Y for any X, Y ∈ R.

6. µ(x) = x2 is a bijection µ : R+ → R+. Find x ∗ y if µ is to be an isomorphism.

(a) µ : (R+, ∗) → (R+,+) (b) µ : (R+,+) → (R+, ∗) (c) µ : (R+, ∗) → (R+, ·)
7. Show that x ∗ y = x + y − xy is the pull-back of (R×, ·) to R \ {1} by µ(x) = 1 − x. Use this to

provide an alternative quick argument for Exercise 2.1.9.

8. Recall Exercise 2.3.6c. Prove that the Klein four-group and Z×
8 are isomorphic.

9. (a) Prove that S :=
{( a −b

b a

)
∈ M2(R)

}
forms a group under matrix addition.

(b) Prove that T = S \ {0} (S without the zero matrix) forms a group under matrix multipli-
cation.

(c) Define ϕ
( a −b

b a

)
= a + ib. Prove that ϕ : S → C and ϕT : T → C× are both isomorphisms

ϕ : (S,+) ∼= (C,+), ϕ|T : (T, ·) ∼= (C×, ·)
(In a future class, ϕ will be described as an isomorphism of rings/fields)

10. (Recall Exercise 2.4.8 and Footnote 9) Prove that S1 ∼= SO2(R) via an isomorphism

µ(eiθ) =

(
cos θ − sin θ
sin θ cos θ

)
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11. Suppose µ : (G, ∗) → (H, ⋆) is an isomorphism of binary structures. Prove:

(a) If e is the identity for G, then µ(e) is the identity for H.

(b) If x ∈ G has an inverse y, then µ(y) is an inverse to µ(x) (in H).

(c) Suppose ϕ : G → H is a group homomorphism. Show that parts (a), (b) still hold: ϕ(eG) = eH

and ϕ(x−1) =
(
ϕ(x)

)−1.
For a challenge: What happens if ϕ is merely a homomorphism of binary structures?

12. Given a group homomorphism ϕ : G → H , define the image ϕ(G) and kernel K as follows:

ϕ(G) = Im ϕ =
{

ϕ(x) : x ∈ G
}

, K :=
{

x ∈ G : ϕ(x) = e
}

(a) Compute the image and kernel of ϕ : (R×, ·) → (R×, ·) where ϕ(x) = x2.

(b) Prove that ϕ(G) is a subgroup of H (in general, not just for the example in (a)!).

(c) Prove that K is a subgroup of G.

(We’ll return to these important concepts later)

13. The groups (Q,+) and (Q+, ·) are both abelian and both have the same cardinality: nonethe-
less, we prove that they are non-isomorphic.

Assume, for contradiction, that µ : Q → Q+ is an isomorphism.

(a) If c ∈ Q is constant, what equation in Q+ corresponds to x + x = c?

(b) By considering the number of solutions to the equations in part (a), obtain a contradiction
and hence conclude that (Q,+) ≇ (Q+, ·).

(Extra challenge) Suppose ϕ : (Q,+) → (R, ·) is a homomorphism and that ϕ(1) = a: find a
formula for ϕ(x).

14. Recall the magic square property (Exercise 2.1.11).

(a) Up to isomorphism, explain why there is a unique group of order three.
(This is another reason the groups in Example 2.29 must be isomorphic!)

(b) Show that, up to isomorphism, there are precisely two groups of order four.
(Hint: If G = {e, a, b, c}, why may we assume, without loss of generality, that b2 = e? Your
answers should look like the Klein four-group V and the group Z4.)

(c) (Hard) What happens for order five?

15. Prove that isomorphic is an equivalence relation on any collection of groups. That is, for all
groups G, H, K:

Reflexivity: G ∼= G.
Symmetry: G ∼= H =⇒ H ∼= G.
Transitivity: G ∼= H and H ∼= K =⇒ G ∼= K.
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3 Cyclic & Finite Abelian Groups

In this chapter we consider a general family of groups and see how to combine these to describe any
finite abelian group.

3.1 Definitions and Basic Examples

The foundational idea of a cyclic group is that it may be generated from a single element.

Examples 3.1. 1. The integers (Z,+) are generated by the element 1: all integers may be produced
by repeatedly combining 1 using only the group operation (+) and inverses (−). For instance,

−4 = −(1 + 1 + 1 + 1)

2. The modular arithmetic groups (Zn,+n) (Section 2.3) are also generated by (the remainder) 1.
Since the group is finite, inverses are not necessary. For instance,

Z4 = {0, 1, 2, 3} = {0, 1, 1 + 1, 1 + 1 + 1}

3. The group Rn of rotations of a regular n-gon (Definition 2.24) is generated by the ‘1-step’ rota-
tion ρ1: that is, ρk = ρk

1.

We formalize this idea by considering the subset of a group that may be produced from a single
element, the group operation, and inverses.

Lemma 3.2 (Cyclic subgroup). Let G be a group and g ∈ G. The set

⟨g⟩ := {gn : n ∈ Z} = {. . . , g−1, e, g, g2, . . .}

is a subgroup of G. We call this the cyclic subgroup15 generated by g.

Proof. We follow the subgroup criterion (Theorem 2.14).

Non-emptiness: Plainly g ∈ ⟨g⟩.
Closure: Every element of ⟨g⟩ has the form gk for some k ∈ Z. The required condition

follows from standard exponential notation (Definition 2.3): gk · gl = gk+l ∈ ⟨g⟩.
Inverses: This is Exercise 2.1.7c: (gk)−1 = g−k ∈ ⟨g⟩.

Definition 3.3 (Cyclic group). A group G is cyclic if it has a generator: ∃g ∈ G such that G = ⟨g⟩.
In any group G, the order of an element g is the order (cardinality) of the cyclic subgroup ⟨g⟩ ≤ G.

Warning! Don’t confuse the order of a group G with the order of an element g ∈ G. Cyclic groups are
precisely those containing elements (generators) whose order equals that of the group!

15Since this is an abstract result, the lemma is written multiplicatively. If G is an additive group, then cyclic subgroups
are written ⟨g⟩ = {ng : n ∈ Z} = {. . . ,−2g,−g, 0, g, 2g, 3g, . . .}. As in Example 3.1.2, for finite cyclic groups convention
dictates that the identity element is written first, e.g. ⟨g⟩ = {e, g, g2, . . . , gn−1}.
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Examples (3.1 cont). 1. Z = ⟨1⟩ = ⟨−1⟩ is generated by either 1 or −1. The cyclic subgroup
generated by 2 is the group of even numbers under addition

⟨2⟩ = {. . . ,−2, 0, 2, 4, . . .} = {2m : m ∈ Z} = 2Z

2. Zn is generated by both 1 and −1 = n − 1, but may have other generators (we’ll consider how
to find them all shortly). For instance, Z5 is generated also by 2:

⟨2⟩ = {0, 2, 2 + 2, 2 + 2 + 2, . . .} = {0, 2, 4, 1, 3} = Z5

3. Rn = ⟨ρ1⟩ = {e, ρ1, ρ2
1, . . . , ρn−1

1 }. As with Zn, this group typically has other generators.

Another commonly encountered family of cyclic groups arise as subgroups of (C×, ·) (or (S1, ·)).

Definition 3.4 (Roots of Unity). Let n ∈ N. The group of nth roots of unity Un is the cyclic subgroup
of (S1, ·) generated by ζ := e

2πi
n :

Un := ⟨ζ⟩ =
{

1, ζ, ζ2, · · · , ζn−1}
These are precisely the n complex solutions to the equation zn = 1. To emphasize n, write ζn = e

2πi
n .

For instance U2 = ⟨−1⟩ = {1,−1} and U4 = ⟨i⟩ = {1, i,−1,−i}. In general,
the nth roots are the vertices of a regular n-gon centered at 0 with radius 1:∣∣∣ζk

∣∣∣ = |ζ|k = 1 and arg ζk = arg e
2πk

n = 2πk
n = k arg ζ

We stop listing the elements at ζn−1 since ζn = e2πi = 1. The periodicity of
the complex exponential (eiθ = 1 ⇐⇒ θ ∈ 2πZ) results in a simple tie-in
with modular arithmetic:

ζk = ζ l ⇐⇒ 1 = ζk−l = e
2πi(k−l)

n ⇐⇒ k ≡ l (mod n)

−1 1

ζ
ζ2

ζ3

ζ4

ζ5
ζ6

i

−i

Seventh roots: ζ7 = e
2πi

7

Examples 3.5. 1. Observe that ζ2
6 = (e

2πi
6 )2 = e

2πi
3 = ζ3.

This produces a subgroup relationship: writing ζ = ζ6, we have

U3 =
{

1, ζ2, ζ4} < U6 =
{

1, ζ, ζ2, ζ3, ζ4, ζ5}
The picture makes this geometrically trivial (compare Example 2.26.2).

S1
ζζ2

ζ3

ζ4 ζ5

1

2. (Example 2.29, cont.) Below is the Cayley table for U3. Writing 1 = ζ0 and ζ = ζ1 makes the
isomorphic relationship with (Z3,+3) and (R3, ◦) obvious: (U3, ·) ∼= (Z3,+3) ∼= (R3, ◦).

· 1 ζ ζ2

1 1 ζ ζ2

ζ ζ ζ2 1
ζ2 ζ2 1 ζ

· ζ0 ζ1 ζ2

ζ0 ζ0 ζ1 ζ2

ζ1 ζ1 ζ2 ζ0

ζ2 ζ2 ζ0 ζ1

+3 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

◦ ρ0 ρ1 ρ2

ρ0 ρ0 ρ1 ρ2

ρ1 ρ1 ρ2 ρ0

ρ2 ρ2 ρ0 ρ1
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For a little practice here is a formal argument that Z3 ∼= U3: we show explicitly that

µ : Z3 → U3 : x 7→ ζx

is an isomorphism. Since the domain Z3 consists of equivalence classes, this requires a little care.

Well-definition: We must prove that if x = y in Z3, then µ(x) = µ(y).
Given x = y ∈ Z3, then (as integers) x = y + 3k for some integer k. But then

µ(x) = ζx = ζx+3k = ζy(ζ3)k = ζy = µ(y)

Homomorphism: µ(x + y) = ζx+y = ζxζy = µ(x)µ(y)

Injectivity: µ(x) = µ(y) =⇒ ζx = ζy =⇒ ζx−y = 1 =⇒ x ≡ y (mod 3) =⇒ x = y in Z3.
(Notice how injectivity is the converse of well-definition!)

Surjectivity: range µ = {ζx : x ∈ Z} = {1, ζ, ζ2} = U3, since ζx+3k = ζx.

In the next section we’ll essentially repeat this discussion in the abstract, so make sure this
example makes sense before moving on.

Exercises 3.1. Key concepts: Generator Order of an element Cyclic (sub)group Roots of unity

1. Compute the cyclic subgroup ⟨12⟩ of Z20 (write the elements in the order generated).

2. Find/describe all the generators of each cyclic group.

(a) (Z,+) (b) {2n3−n : n ∈ Z} under multiplication
(c) (Z5,+5) (d)

{(
a 0
0 a

)
,
(

0 b
−b 0

)
: a, b = ±1

}
under multiplication

3. State all cyclic subgroups of Z9. What is the order of each element?

4. Recall Example 2.25. What is the cyclic subgroup of D3 generated by ρ1? Generated by µ1?

5. (a) Find all cyclic subgroups of the Klein four-group V. What is the order of each element?
(b) V is a finite non-cyclic group. Give an example of an infinite non-cyclic group, and explain

how you know you are correct.

6. Compute the cyclic subgroup
〈
ζ5

8
〉

of U8, listing its elements in the order generated.

7. (a) Prove that (U3, ·) is a subgroup of (U9, ·).
(b) Complete the sentence and prove your assertion:

Um ≤ Un if and only if (relationship between m and n)

8. (a) Show that Z×
5 = {1, 2, 3, 4} forms a cyclic group under multiplication modulo 5.

(b) What about Z×
8 = {1, 3, 5, 7} under multiplication modulo 8? To what well-known group

is this isomorphic?

9. Suppose that a cyclic group G has order |G| ≥ 3. Explain why it has at least two generators.

10. Modeling Example 3.5.2, prove explicitly that Zn ∼= Un for any n ∈ N.

11. In contrast to the real case (Example 2.32.2), verify that ϕ : C → C× : z 7→ ez is a homomorphism
(C,+) ∼= (C×, ·) but not an isomorphism.
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3.2 The Classification and Structure of Cyclic Groups

We describe all cyclic groups, their generators, and subgroup structures.

Lemma 3.6. Every cyclic group is abelian.

Proof. Let G = ⟨g⟩. Since any two elements of G can be written gk, gl for some k, l ∈ Z, we see that

gkgl = gk+l = gl+k = gl gk

The converse is false: the Klein four-group V is abelian but not cyclic (Exercise 3.1.5).
The remaining discussion is significantly more abstract: take your time, read carefully, and use the
examples to help. We start by observing a pattern you might already have guessed.

Theorem 3.7 (Isomorphs). Every cyclic group G = ⟨g⟩ is isomorphic either to Z or to some Zn.
Explicitly, µ : Z(n) → G : x 7→ gx is an isomorphism: we map generator (1) to generator (g).

For the purposes of the proof we introduce a set S := {m ∈ N : gm = e} of natural numbers (mg = e
if G is additive) which helps detect the order of G. Here are a few examples of the Theorem.

Examples 3.8. 1. Z4 = ⟨1⟩ is additive, so S = {m ∈ N : m = 0 ∈ Z4} = {4, 8, 12, . . .}. The minimal
element 4 is the order of G = |Z4|.

2. (Example 3.5.2) In U3 = ⟨ζ⟩, we have ζm = 1 ⇐⇒ 3 | m. Plainly S = {3, 6, 9, . . .}; its minimal
element 3 is the order of U3. Moreover µ(x) = ζx is the isomorphism µ : Z3 → U3 seen before!

3. 5Z = ⟨5⟩ is an infinite cyclic group. In this case, S = {m ∈ N : 5m = 0} = ∅ is empty. We have
an isomorphism µ : Z → 5Z : x 7→ 5x (map the generator 1 of Z to the generator 5 of 5Z).

Proof. We first establish that µ is a bijection. The generic cases depend on the minimal element of S.

Case 1: S = ∅. Suppose x > y and that gx = gy. Then gx−y = e =⇒ x − y ∈ S: contradiction. The
elements . . . , g−2, g−1, e, g, g2, . . . are distinct, and so µ : Z → G : x 7→ gx is bijective.

Case 2: min S = n. We first check that µ : Zn → G : x 7→ gx is well-defined:

y = x ∈ Zn =⇒ y = x + kn for some k ∈ Z (as integers)

=⇒ µ(y) = gy = gx+kn = gx(gn)k = gx = µ(x) (n ∈ S, so gn = e)

This moreover tells us that G is finite (there is at most one element of G for each x ∈ Zn)

G = ⟨g⟩ = {. . . , g−2, g−1, e, g, g2, . . .} = {e, g, . . . , gn−1}
Now suppose two of these terms were equal; if 0 ≤ y ≤ x ≤ n − 1, then

gx = gy =⇒ gx−y = e =⇒ x = y (0 ≤ x − y ≤ n − 1 < n = min S)

We conclude that G = {e, g, . . . , gn−1} has order n, and that µ is a bijection.

To finish the proof, observe that the homomorphism property in both cases is merely standard expo-
nential notation

µ(x + y) = gx+y = gxgy = µ(x)µ(y)
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The use of S in the proof yields a useful alternative notion of order.

Corollary 3.9 (Order of an element). If finite, the order of g equals the minimal positive integer n
for which gn = e. Moreover gm = e ⇐⇒ n | m.

Examples 3.10. 1. The group of 7th roots of unity U7 is isomorphic to Z7 via µ : Z7 → U7 : k 7→ ζk
7.

As a sanity check, observe that 7 = min{m ∈ N : ζm
7 = 1} is indeed the order of ζ7 = e

2πi
7 .

2. (R,+) is non-cyclic since its (uncountable) cardinality is larger than that of the integers. This is
also straightforward directly: if R = ⟨x⟩ were cyclic (x ̸= 0), then we obtain the contradiction

x
2

/∈ {. . . ,−2x,−x, 0, x, 2x, 3x . . .} = ⟨x⟩ = R ∋ x
2

The same argument shows that, for instance, that (Q,+) is non-cyclic.

3. Let ξ = e
2πi√

2 and consider the cyclic subgroup G := ⟨ξ⟩ < (C×, ·). For integers m, observe that

ξm = e
2πim√

2 = 1 ⇐⇒ m√
2
∈ Z ⇐⇒ m = 0

We conclude that G is an infinite cyclic group and that µ : Z → G : z 7→ ξz is an isomorphism.
Multiplication by ξ essentially performs an irrational fraction ( 1√

2
) of a full rotation.

Subgroups of Cyclic Groups are also Cyclic!

The motivation for this is simple: for instance, observe that the subgroup 2Z ≤ Z is generated by 2,
the minimal positive integer in the subgroup. Our goal, given a subgroup H ≤ G = ⟨g⟩, is to identify
a suitable ‘minimal’ element of H and then demonstrate that this generates H.

Theorem 3.11 (Subgroups of Cyclic Groups). Any subgroup of a cyclic group is cyclic.

Proof. Suppose H is a subgroup of G = ⟨g⟩. If H = {e} is trivial, we are done: H = ⟨e⟩ is cyclic!
Otherwise, let s ∈ N be minimal so that gs ∈ H (we may assume s > 0 since g−s is also in H). We
prove that H is generated by gs by establishing the set equality H = ⟨gs⟩.

(⊇) This is trivial since gs ∈ H and H is a group (closure and inverse axioms of H!).

(⊆) Let gm ∈ H. By the division algorithm, there exist unique integers q, r such that

m = qs + r and 0 ≤ r < s

Since H satisfies the closure and inverse axioms,

gm = gqs+r = (gs)qgr =⇒ gr = (gs)−qgm ∈ H (∗)

The minimality of s forces r = 0, from which we conclude that gm = (gs)q ∈ ⟨gs⟩.

If the proof seems hard, rewrite it for our motivational example: G = Z, H = 2Z and s = 2;
remember that G is additive, so (∗) is simply r = −2s + m ∈ 2Z. . .
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We finish by considering the finite and infinite cases separately. The later is very simple.

Corollary 3.12 (Subgroups of infinite cyclic groups). If G is an infinite cyclic group and H ≤ G,
then either H = {e} is trivial, or H ∼= G.

The proof as an exercise—just generalize the following example!

Example 3.13. We write things out explicitly in additive notation when G = Z. By Theorem 3.11,
every subgroup has the form ⟨s⟩ = sZ (the multiples of s ∈ Z). There are two generic situations:

• If s = 0 we have the trivial subgroup: ⟨0⟩ = {0}.

• If s ̸= 0, then sZ is isomorphic to Z via the isomorphism µ : Z → sZ : x 7→ sx.

Finite cyclic groups are a little more complicated so we first consider an example.

Example 3.14. Consider U6 = {1, ζ, ζ2, ζ3, ζ4, ζ5} under multiplication. Since all subgroups are
cyclic, we need only consider the subgroup ⟨x⟩ generated by each element x.

x subgroup ⟨x⟩
1 {1}
ζ {1, ζ, ζ2, ζ3, ζ4, ζ5}
ζ2 {1, ζ2, ζ4}
ζ3 {1, ζ3}
ζ4 {1, ζ4, ζ2}
ζ5 {1, ζ5, ζ4, ζ3, ζ2, ζ}

⟨ζ⟩ = U6

〈
ζ2〉 = U3

〈
ζ3〉 = U2

⟨1⟩ = U1

Observe the repetitions: ⟨ζ⟩ =
〈
ζ5〉 = U6 and

〈
ζ2〉 = 〈

ζ4〉 = U3.
For comparison, here is the same data for subgroups of the additive group (Z6,+6).

x subgroup ⟨x⟩
0 {0}
1 {0, 1, 2, 3, 4, 5}
2 {0, 2, 4}
3 {0, 3}
4 {0, 4, 2}
5 {0, 5, 4, 3, 2, 1}

⟨1⟩ = Z6

⟨2⟩ ∼= Z3 ⟨3⟩ ∼= Z2

⟨0⟩ ∼= Z1

Since U6 ∼= Z6, differences are entirely notational. One subtle distinction is that we don’t use equals in
the second subgroup diagram: for instance, ⟨2⟩ = {0, 2, 4} is isomorphic but not equal to Z3 = {0, 1, 2}.

As previewed in Lemma 2.21, Example 3.14 should suggest a pattern: the subgroups of Zn are pre-
cisely those generated by the divisors of n, with one subgroup for each divisor:

d | n =⇒ ⟨d⟩ ∼= Z n
d
, moreover gcd(s, n) = d =⇒ ⟨s⟩ = ⟨d⟩

Our final result merely asserts this for general finite cyclic groups.
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Corollary 3.15 (Subgroups of finite cyclic groups). Let G = ⟨g⟩ have order n. For each divisor of n,
G has a unique subgroup with this order; these are moreover the only subgroups of G.
More precisely,

d = gcd(s, n) =⇒ ⟨gs⟩ = ⟨gd⟩, where this subgroup has order n
d (isomorphic to Z n

d
)

In particular: gs has order n
gcd(s,n) and generates G if and only if gcd(s, n) = 1.

Proof. Suppose d = gcd(s, n). We prove set inclusion in both directions.

(⊆) Since d divides s, we have s = kd for some k ∈ Z. But then

gs = (gd)k ∈
〈

gd〉 =⇒ (gs)t = (gd)kt =⇒ ⟨gs⟩ ⊆
〈

gd〉
(⊇) Apply Bézout’s identity (extended Euclidean alg.): d = κs + λn for some κ, λ ∈ Z, whence

gd = (gs)κ(gn)λ = (gs)κ ∈ ⟨gs⟩ =⇒
〈

gd〉 ⊆ ⟨gs⟩

To finish, note that since d | n, there are precisely n
d elements of

〈
gd〉:

⟨gd⟩ =
{

e, gd, g2d, . . . , gn−d}
As with Theorem 3.11, rewriting the proof for the special case G = Zn might make things clearer. It
is more important first to get used to the pattern via examples.

Example 3.16. We describe the subgroups of Z30 and construct its subgroup diagram. The first
column lists each divisor d of 30 (the possible values of gcd(x, 30)). The second column has the
isomorphic group Z 30

d
, while the third lists the explicit subgroup generated by each x ∈ Z30.

d = gcd(x, 30) Isomorph Z 30
d

Subgroup ⟨x⟩
1 Z30 {0, 1, 2, 3, . . . , 7, . . . , 11, 12, 13, . . . , 17, 18, 19, . . . , 23, . . . , 29}
2 Z15 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}
3 Z10 {0, 3, 6, 9, 12, 15, 18, 21, 24, 27}
5 Z6 {0, 5, 10, 15, 20, 25}
6 Z5 {0, 6, 12, 18, 24}
10 Z3 {0, 10, 20}
15 Z2 {0, 15}

0 (30) Z1 {0}
The generators of each subgroup are red in the table. The
‘smallest’ generator is used for each subgroup in the subgroup
diagram.
The shape of the subgroup diagram (this one looks something
like a cube) depends on the fact that in the prime decomposition
30 = 2 · 3 · 5, each prime appears exactly once.

⟨1⟩ = Z30

⟨2⟩ ∼= Z15 ⟨3⟩ ∼= Z10 ⟨5⟩ ∼= Z6

⟨6⟩ ∼= Z5 ⟨10⟩ ∼= Z3 ⟨15⟩ ∼= Z2

⟨0⟩ ∼= Z1
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Exercises 3.2. Key concepts: Every cyclic group isomorphic to Z or Zn

⟨g⟩ order n =⇒ ⟨gs⟩ order n
gcd(s,n) Subgroup diagrams for finite cyclic groups

1. Construct the subgroup diagram and give a generator of each subgroup:

(a) (Z10,+10) (b) (Z42,+42).

2. A generator of the cyclic group Un group is known as a primitive nth root of unity. For instance,
the primitive 4th roots are ±i. Find all the primitive roots when:

(a) n = 5 (b) n = 6 (c) n = 8 (d) n = 15

3. Find the complete subgroup diagram of Up2q where p, q are distinct primes.

(Hint: Try U12 first if this seems too difficult)

4. If r ∈ N and p is prime, find all subgroups of (Zpr ,+pr) and give a generator for each.

5. (a) Suppose µ : G → H is an isomorphism of cyclic groups. If g is a generator of G, prove that
µ(g) is a generator of H. Do you really need µ to be an isomorphism here?

(b) If G is an infinite cyclic group, how many generators has it got?

(c) Recall Exercise 3.1.6b. Describe an isomorphism ϕ : Z4 → Z×
5 .

6. True or false: In any group G, if g has order n, then gs has order n
gcd(s,n) . Explain.

7. Suppose G = ⟨g⟩ is infinite and H = ⟨gs⟩ is an infinite subgroup. Prove Corollary 3.12 by
describing an isomorphism µ : G → H.

8. Prove Corollary 3.9: you’ll need the division algorithm for the second part!

9. Let x, y be elements of a group G. If xy has finite order n, prove that yx also has order n.

(Hint: (xy)m = x(yx)m−1y)

10. For which real numbers θ is the multiplicative cyclic group G =
〈
e2πiθ〉 ≤ C× finite? Describe

the order of G in terms of θ.

11. Let G be a group and X a non-empty subset of G. The subgroup generated by X is the subgroup
created by making all possible combinations of elements and inverses of elements in X.

(a) Explain why (Z,+) is generated by the set X = {2, 3}.

(b) If m, n ∈ (Z,+), show X = {m, n} generates dZ, where d = gcd(m, n).

(c) The Klein four-group V is not cyclic, so it cannot be generated by a singleton set. Find a
set of two elements which generates V.

(d) Describe the subgroup of (Q,+) generated by X = { 1
2 , 1

3}.

(e) (Hard) (Q,+) is plainly generated by the infinite set { 1
n : n ∈ N}. Explain why (Q,+) is

not finitely generated: i.e. there exists no finite set X generating Q.
(Hint: Think about the prime factors of the denominators of elements of X)
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3.3 Direct Products & Finite Abelian Groups

In this section we discuss a straightforward way to create new groups from old using the Cartesian
product. In the abstract, this discussion applies to any groups, though the ingredients in most of our
examples will be cyclic.

Example 3.17. Given Z2 = {0, 1}, the Cartesian product

Z2 × Z2 =
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
has four elements. This set inherits a binary structure via addition of co-ordinates

(x, y) + (v, w) := (x + v, y + w)

where x + v and y + w are both computed in (Z2,+2). This binary operation has an addition table
that should looks very familiar: it has exactly the same structure as the Klein four-group!

+ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

↭

◦ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

We conclude that Z2 × Z2 ∼= V is indeed a group.

This type of construction works in general.

Theorem 3.18 (Direct product). The natural component-wise operation on the Cartesian product
n

∏
k=1

Gk = G1 × · · · × Gn, (x1, . . . , xn) · (y1, . . . , yn) := (x1y1, . . . , xnyn)

defines a group structure: the direct product. This group is abelian if and only if each Gk is abelian.

The proof is a simple exercise. Being a Cartesian product, a direct product has order equal to the
product of the orders of its components∣∣∣∣∣ n

∏
k=1

Gk

∣∣∣∣∣ = n

∏
k=1

|Gk|

Examples 3.19. 1. The direct product of the groups (Z2,+2) and (Z3,+3) is

Z2 × Z3 =
{
(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)

}
This is abelian of order 6, so we might guess that it is isomorphic to (Z6,+6) and thus cyclic.
This is indeed the case: simply observe that (1, 1) is a generator,

⟨(1, 1)⟩ =
{
(0, 0), (1, 1), (0, 2), (1, 0), (0, 1), (1, 2)

}
= Z2 × Z3

In accordance with Theorem 3.7, µ(x) = (x, x) defines an isomorphism µ : Z6 ∼= Z2 × Z3.
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2. If each Gk is abelian and written additively, the direct product is sometimes called a direct sum,16

n⊕
k=1

Gk = G1 ⊕ · · · ⊕ Gn

We won’t use this notation, though you’ve likely encountered it in linear algebra: for instance,
the direct sum of n copies of the real line R is the familiar vector space

Rn =
n⊕

i=1

R = R ⊕ · · · ⊕ R

Orders of Elements in a Direct Product

In Example 3.19.1, we saw that the element (1, 1) ∈ Z2 × Z3 had order 6 and thus generated the
group. There is another general pattern here; to help spot it, consider another example.

Example 3.20. We find the order of the element (10, 2) ∈ Z12 × Z8? Recall Corollary 3.15:

• 10 ∈ Z12 has order 6 = 12
gcd(10,12)

• 2 ∈ Z8 has order 4 = 8
gcd(2,8)

If we repeatedly add (10, 2) to itself, then the first co-ordinate resets after 6 summations, whereas
the second resets after 4. For both to reset simultaneously, we need a common multiple of 6 and 4
summands. We can check this explicitly:〈

(10, 2)
〉
=

{
(10, 2), (8, 4), (6, 6), (4, 0), (2, 2), (0, 4), (10, 6), (8, 0), (6, 2), (4, 4), (2, 6), (0, 0)

}
The order of the element (10, 2) is indeed the least common multiple 12 = lcm(6, 4).

Theorem 3.21. Suppose xk ∈ Gk has order rk. Then (x1, . . . , xn) ∈
n
∏

k=1
Gk has order lcm(r1, . . . , rn).

Proof. We appeal to Corollary 3.9:

(x1, . . . , xn)
m = (xm

1 , . . . , xm
n ) = (e1, e2, . . . , en) ⇐⇒ ∀k, xm

k = ek ⇐⇒ ∀k, rk | m

The order is the minimal positive integer m satisfying this, namely m = lcm(r1, . . . , rn).

Example 3.22. Find the order of (1, 3, 2, 6) ∈ Z4 × Z7 × Z5 × Z20.
Again with reference to Corollary 3.15, the element has order

lcm
(

4
gcd(1,4) , 7

gcd(3,7) , 5
gcd(2,5) , 20

gcd(6,20)

)
= lcm(4, 7, 5, 10) = 140

16In these notes a direct product/sum will only ever have finitely many factors, in which case the concepts are identical.
The slight difference in the concepts when there are infinitely many factors is not worth discussing here.

32



When is a direct product of finite cyclic groups cyclic?

Recall that Z2 ×Z3 ∼= Z6 is cyclic, whereas Z2 ×Z2 ∼= V is non-cyclic. It is reasonable to hypothesize
that the issue is whether the orders of the components are relatively prime.

Corollary 3.23. Zm × Zn is cyclic ⇐⇒ gcd(m, n) = 1. In such a case Zm × Zn ∼= Zmn.
More generally:

• Zm1 × · · · × Zmk
∼= Zm1···mk ⇐⇒ ∀i ̸= j, gcd(mi, mj) = 1.

• If n = pr1
1 · · · prk

k is written in its prime factorization, then Zn ∼= Zpr1
1
× · · · × Zp

rk
k

Proof. We prove the first part; the generalization follows by induction.

(⇐) Suppose gcd(m, n) = 1. We claim that (1, 1) is a generator of Zm × Zn. But this element has
order lcm(m, n) = mn

gcd(m,n) = mn = |Zm × Zn|, so we’re done.

(⇒) This is Exercise 11.

Examples 3.24. 1. (Example 3.22) The group Z4 × Z7 × Z5 × Z20 is non-cyclic since, for instance,
gcd(4, 20) ̸= 1. The maximum order of an element in this group is

lcm(4, 7, 5, 20) = 140 < 2800 = |Z4 × Z7 × Z5 × Z20|

2. Is Z5 × Z7 × Z12 cyclic? The Corollary says yes, since no pair of 5, 7, 12 have common factors.
It is ghastly to write, but there are 12 different ways (up to reordering) of expressing this group
as a direct product!

Z420
∼= Z3 × Z140

∼= Z4 × Z105
∼= Z5 × Z84

∼= Z7 × Z60
∼= Z3 × Z4 × Z35 ∼= Z3 × Z5 × Z28 ∼= Z3 × Z7 × Z20
∼= Z4 × Z5 × Z21

∼= Z4 × Z7 × Z15
∼= Z5 × Z7 × Z12

∼= Z3 × Z4 × Z5 × Z7

We may combine/permute the factors of 420 = 22 · 3 · 5 · 7, provided we don’t separate 22 = 4.

The Fundamental Theorem of Finite(ly Generated) Abelian Groups

We’ve used the direct product to create finite abelian groups from cyclic building blocks. While we
don’t yet have the technology to prove it, our final result provides a powerful converse.

Theorem 3.25. Every finite abelian group is isomorphic to a group of the form

Zpr1
1
× · · · × Zp

rk
k

where each rj ∈ N and the pi are primes (not necessarily distinct). More generally, every finitely
generated abelian group (see Exercise 3.2.11) is isomorphic to some

Zpr1
1
× · · · × Zp

rk
k
× Z × · · · × Z
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Examples 3.26. 1. Up to isomorphism, there are five distinct abelian groups of order 81 = 34:

Z81, Z3 × Z27, Z9 × Z9, Z3 × Z3 × Z9, Z3 × Z3 × Z3 × Z3

Such groups can often be distinguished by considering the orders of elements. For instance:

G is abelian of order 81 and,
G has an element of order 27 and,
All elements of G have order ≤ 27

 =⇒ G ∼= Z3 × Z27

2. Since 450 = 2 · 32 · 52 is a prime factorization, the fundamental theorem says that every abelian
group of order 450 is isomorphic to one of four groups:

(a) Z2 × Z32 × Z52 ∼= Z450 (cyclic, maximum order of an element 450)
(b) Z2 × Z3 × Z3 × Z52 (non-cyclic, maximum order 150 = 2 · 3 · 52)
(c) Z2 × Z32 × Z5 × Z5 (non-cyclic, maximum order 90 = 2 · 32 · 5)
(d) Z2 × Z3 × Z3 × Z5 × Z5 (non-cyclic, maximum order 30 = 2 · 3 · 5)

As previously, there are multiple isomorphic ways to express each group as a direct product.

We finish by listing, up to isomorphism, all groups of order ≤ 15 and all abelian groups of order 16.

order abelian non-abelian
1 Z1
2 Z2
3 Z3
4 Z4, V ∼= Z2 × Z2

5 Z5
6 Z6 ∼= Z2 × Z3 D3 ∼= S3
7 Z7
8 Z8, Z2 × Z4, Z2 × Z2 × Z2 D4, Q8

9 Z9, Z3 × Z3
10 Z10

∼= Z2 × Z5 D5
11 Z11
12 Z12

∼= Z3 × Z4, Z2 × Z6 ∼= Z2 × Z2 × Z3 D6, A4, Q12
13 Z13
14 Z14

∼= Z2 × Z7 D7
15 Z15

∼= Z3 × Z5
16 Z16, Z4 × Z4, Z2 × Z8, Z2 × Z2 × Z4, Z2 × Z2 × Z2 × Z2 (nine)

The Fundamental Theorem & Corollary 3.23 supply the abelian groups. In the non-abelian column:

• The dihedral groups Dn are the familiar symmetries of a regular n-gon (Definition 2.24).

• S3 and A4 will be described in Chapter 4 (symmetric and alternating groups).

• Q8 is the quaternion group (Exercise 2.2.8). The generalized quaternion group Q12 is related.

There are nine non-isomorphic non-abelian groups of order 16: D8 and the direct product Z2 × Q8
are explicit examples. You might suspect from the table that all non-abelian groups have even order:
this is not so, though the smallest counter-example has order 21.
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Exercises 3.3. Key concepts:

Direct product Order of an element via lcm Cyclic/gcd criteria Fundamental theorem

1. List the elements of the following direct product groups:

(a) Z2 × Z4 (b) Z3 × Z3 (c) Z2 × Z2 × Z2

2. Prove Theorem 3.18 by checking each of the axioms of a group.

3. Prove that G × H ∼= H × G.

4. Prove that a direct product ∏ Gk is abelian if and only if its components Gk are all abelian.

5. Find the orders of the following elements and write down the cyclic subgroups generated by
each (list all of the elements explicitly):

(a) (1, 3) ∈ Z2 × Z4 (b) (4, 2, 1) ∈ Z6 × Z4 × Z3

6. Is the group Z12 × Z27 × Z125 cyclic? Explain.

7. Find a generator of the group Z3 × Z4 and hence define an isomorphism µ : Z12
∼= Z3 × Z4.

(Hint: read the proof of Corollary 3.23)

8. State three non-isomorphic groups of order 50.

9. Suppose p, q are distinct primes. Up to isomorphism, how many abelian groups are there of
order p2q2?

10. Give a simple explanation for why D8 is not isomorphic to Z2 × Q8.

11. Complete the proof of Corollary 3.23: if Zm × Zn is cyclic, then gcd(m, n) = 1.

(Hint: if gcd(m, n) ≥ 2, what is the maximum order of an element in Zm × Zn?)

12. Suppose G is an abelian group of order m, where m is a square-free positive integer (∄k ∈ Z≥2
such that k2 |m). Prove that G is cyclic.

13. (a) Let G be a finitely generated abelian group and let H be the subset of G consisting of the
identity e together with all the elements of order 2 in G. Prove that H is a subgroup of G.

(b) In the language of the Fundamental Theorem, to which direct product is H isomorphic?

14. Suppose G is a finite abelian group and that m is a divisor of |G|. Prove that G has a subgroup
of order m.

(Hint: use the prime decomposition of m and the fundamental theorem to identify a suitable subgroup of
Zpr1

1
× · × Zp

rk
k

)

15. Suppose G is an abelian group and let T ⊆ G be the subset of elements with finite order.

(a) Prove that T is a subgroup of G.
(Your proof shouldn’t use the Fundamental Theorem—why not?)

(b) Compute T when:
i. G = (R×, ·) ii. G = (S1, ·)
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