
MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

UNIT – I
MICROPROCESSOR – 8085

Microprocessor – Introduction
Microprocessor is a multipurpose programmable integrated circuit (IC) chip. It has

computing and decision-making capabilities similar to the central processing unit (CPU) of a
computer. Figure shows the parts of a microprocessor based system. The microprocessor
works as per the program stored in memory. Data from the external world enters the
microprocessor through the input unit. Data may be sent to the external world through the
Output input.

Some of the important features of microprocessor are:
The microprocessor IC consists of ALU, Registers and Control unit.
1. ALU – Arithmetic and Logic Unit. ALU performs the computing and decision making
operations.
2. Registers–Registers are used for storing the internal temporary data.
3. Control unit – The control unit controls the operation of the microprocessor and the
devices connected to the microprocessor.
4. The microprocessor can understand a set of basic commands (instruction set).
5. The microprocessor has several pins for transmitting address signals to the memory and
I/O (Input / Output) devices. These pins are known as address bus.
6. The microprocessor has several pins for transmitting data signals to the memory and I/O
devices. These pins are known as data bus.
7. The microprocessor has few pins for controlling the memory and I/O devices. These pins
are known as control bus.
Evolution of microprocessor
The history of the development of microprocessor is given below:
4-bit microprocessors:
 4004 was the first microprocessor introduced in 1971 by Intel Corporation, USA.
 Operating on 4-bits of data at a time.
 Has the capabilities for addition, subtraction, comparison and logical (AND and OR)

operations.
 Examples: Intel’s 4004, Intel’s 4040, Rockwell International’s PPS4, Toshiba’s

T3472

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

8-bit microprocessors:
 8008 was the first 8-bit microprocessor introduced in 1973 by Intel Corporation,

USA.
 Perform arithmetic and logical operations on 8-bit data.
 Examples: Intel’s 8008, Intel’s 8080, Intel’s 8085, Motorola’s M6800, National

Semiconductor’s NSC 800, Zilog Corporation’s Z80, Fairchild’s F8, Hitachi’s 6809.
12-bit microprocessors:
 Performs arithmetic and logical operations on 12-bit data
 Examples : Intersil’s IM6100, Toshiba’s T3190

16-bit microprocessors:
 Performs arithmetic and logical operations on 16-bit data
 Examples : Intel’s 8086, Intel’s 8088, Intel’s 80286, Fairchild’s 9440, Data General’s

mN601, Texas Instrument’s TMS9900, Motorola’s M68000, Zilog’s Z8000
32-bit microprocessors:
 Performs arithmetic and logical operations on 32-bit data
 Examples: Intel’s 80386, Intel’s 80486, Intel’s iAPX432, Motorola’s 68020,

Motorola’s 68030, National’s 32032, National’s 32523, Inmos’ T414, Inmos’ T800
64-bit microprocessors:
 Performs arithmetic and logical operations on 64-bit data
 Intel’s Pentium microprocessor executes 100 million instructions per second (MIPS).
 Examples: Intel’s Pentium (80586), Intel’s Pentium Pro, Intel’s Pentium II, Celeron,

Intel’s Pentium III and Intel’s Pentium IV
Architecture of 8085 Microprocessor

The internal architecture (block diagram) of 8085 Microprocessor is shown in figure.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

The following are the functional blocks in the 8085Microprocessor.
1. Accumulator
2. Temporary register
3. Arithmetic and Logic Unit (ALU)
4. Flag register
5. Instruction Register
6. Instruction Decoder and Machine cycle encoder
7. General purpose registers
8. Stack Pointer
9. Program Counter
10.Incrementer / Decrementer
11.Timing and Control unit
12.Interrupt control
13.Serial I/O control
14.Address buffer and Address / Data buffer
1. Accumulator (A-register)

It is an 8-bit register. It is associated with ALU. The accumulator is also called A-
register. During the arithmetic / logic operations, one of the operand is available in
Accumulator. The result of the arithmetic / logic operations is also stored in the Accumulator.
2. Temporary (TEMP) register

It is an 8-bit register. It is also associated with ALU. This register is used to hold one
of the data (from memory or general purpose registers) during an arithmetic / logic operation.
3. Arithmetic and Logic Unit (ALU)

The Arithmetic and Logic Unit includes Accumulator, Temporary register, arithmetic
and logic circuits and flag register. The ALU can perform arithmetic (such as addition and
subtraction) and logic operations (such as AND, OR and EX-OR) on 8-bit data. It receives
the data from accumulator and or TEMP register. The result is stored in the accumulator. The
conditions of the result (such as carry, zero) are indicated in the flags.
4. Flag register

It is an 8-bit register. But only five bits are used. The flag positions in the flag register
are shown in figure

The flags are affected by the arithmetic and logic operations in the ALU. The flag register

is also known as Status register or Condition code register. There are five flags namely Sign
(S) flag, Zero (Z) flag, Auxiliary Carry (AC) flag, Parity (P) flag and Carry (CY) flag.
 Sign (S) flag: Sign flag is set (1) if the bit D7 of the result in the accumulator is 1,

otherwise it is reset (0). This flag is set when the result is negative. This flag is used
only for signed numbers.

 Zero (Z) flag: Zero flag is set (1) if the result in the accumulator is zero, otherwise it
is reset (0).

 Auxiliary Carry (AC): Auxiliary Carry flag is set (1) if there is a carry from bit
position D3of result in the accumulator, otherwise it is reset (0). This flag is used for
BCD operations.

 Parity (P) flag: Parity flag is set (1) if the result in the accumulator has even number
of 1s, otherwise it is reset (0).

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

 Carry (CY) flag: Carry flag is set (1) if the result of an arithmetic operation results in
a carry from bit position D7, otherwise it is reset (0). This flag is also used to indicate
a borrow condition during subtraction operations.

5. Instruction register
When an instruction is fetched from memory, it is stored in the Instruction register. It

is an 8-bit register. This resister cannot be used in the programs.
6. Instruction Decoder and Machine cycle encoding

This unit decodes the instruction stored in the Instruction register. It determines the
nature of the instruction and establishes the sequence of events to be followed by the Timing
and control unit.
7. General purpose registers

There are six 8-bit general purpose registers namely B, C, D, E, H and L registers. B
and C registers are combined together as BC register pair for 16-bit operations. Similarly D
and E registers can be used as DE resister pair and H and L as HL register pair. The HL
register pair is also used as memory pointer (M-register) for storing 16-bit address in some
instructions. There are two more 8-bit temporary registers W and Z. These registers are used
to hold data during the execution of some instructions. W and Z registers cannot be used in
programs.
8. Stack Pointer (SP)

Stack is a portion of memory (RAM) used as FILO (First In Last Out) buffer. This is
mainly used during subroutine operations. Stack Pointer is a 16- bit register used as a
memory pointer (16-bit address) for denoting the stack position in memory. The Stack pointer
is decremented each time when data is loaded into the stack and incremented when data is
retrieved from the stack. Stack pointer always points to the top of the stack memory.
9. Program Counter (PC)

The Program Counter (PC) is a 16-bit register. It is used to point the address of the
next instruction to be fetched from the memory. When one instruction is fetched from
memory, PC is automatically incremented to point out the next instruction.
10. Incrementer / Decrementer

This unit is used to increment or decrement the contents of the 16-bit registers.
11. Timing and Control unit

This unit synchronizes all the microprocessor operations with the clock and generates
the control signals necessary for communication between microprocessor and peripherals.
The internal clock generator is available in this unit. This unit has the micro programs for all
the instructions to carry out the micro steps required in completing the instructions. This unit
receives signals from the Instruction decoder and Machine cycle encoding unit and generates
control signals according to the micro-program for the instruction.
12. Interrupt control

There are five hardware interrupts available in 8085 Microprocessor namely TRAP,
RST 7.5, RST 6.5, RST 5.5 and INTR for interfacing the peripherals with the microprocessor.
These interrupts are handled by the Interrupt control unit. 𝐼𝑁𝑇𝐴 Signal is generated by the
Interrupt control unit as an acknowledgement for an interrupting device. If two or more
interrupts occur at the same time, service is given according to the priority basis.
13. Serial I/O control

Serial data is transmitted to the peripherals through SOD pin and received through the
SID pin. The SOD and SID pins are handled by the Serial I/O control unit using the SIM and
RIM instructions.
14. Address buffer and Address / Data buffer

The Address buffer is an 8-bit unidirectional buffer from which the higher order
address bits A8 – A15 leaves the microprocessor to the memory and peripherals. The Address /

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

Data buffer is an 8-bit bidirectional buffer used for sending the lower order address bits A0 –
A7 and sending and receiving the data bits D0 – D7 to the memory and peripherals.
Instruction set and addressing modes
Instruction format

The format of 8085 microprocessor instructions is shown in figure.

The instruction has two parts, Opcode and Operand.
Opcode: Represents the operation to be performed on the operand. It is also called mnemonic.
Operand: Data or address is given in this part. If the operand is an 8-bit data, only Operand-1
is present in the instruction. If the operand is a 16-bit data or address, Operand-1 and
Operand-2 are specified in the instruction. Both Operand-1 and Operand-2 are optional.
Classification of instructions based on size

There are three groups of instructions in 8085 microprocessor based on the length or
size of the instruction. They are,
1. Single byte (or 1 byte) instructions
2. Two byte instructions
3. Three byte instructions

Single byte instructions

This type of instruction has only Opcode and the operand is specified within the

Opcode itself.
Example: 1) MOV B, C 2) ADD B

Two byte instructions

This type of instruction has Opcode and one operand. The first byte represents the

Opcode and the second byte represents the 8-bit operand data or 8-bit port address.
This type of instruction has Opcode and one operand. The first byte represents
the Opcode and the second byte represents the 8-bit operand data or 8-bit port
address.

Example : 1) MVI A, 50H 2) OUT 50H
Three byte instructions

This type of instruction has Opcode and two operands. The first byte represents the

Opcode, the second byte presents the lower order 8-bits of data or address and the third byte
represents the higher order 8-bits of data or address.

Example: 1) STA 5000H 2) LXI B, 5000H

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

Classification of instructions based on function
There are 246 instructions (74 types) in the 8085 microprocessor. Based on the

function of the instruction, the instructions are classified into the following five types.
1. Data transfer instructions
2. Arithmetic instructions
3. Logic and bit manipulation instructions
4. Branch instructions
5. Machine control instructions
Data transfer instructions

These instructions move (or copy) data from source to destination. The source and
destination are registers and memory. Memory to memory transfer is not possible. After the
data transfer, the content of the source is not modified and the earlier content of the
destination is altered. No flags are affected.
Examples: 1) MOV A, B 2) MOV A, M
Arithmetic instructions

Arithmetic operations like addition, subtraction, increment and decrement are
performed by this category of instructions. One of the operand is taken from the Accumulator
and the other operand may be from registers or memory. The result of the arithmetic
operations is stored in the Accumulator. All the flags are affected.
Examples: 1) ADD B 2) INR A
Logic and bit manipulation instructions

Logical functions like AND, OR and EX-OR are performed by this instructions. All
logic functions are performed in relation with the contents of the Accumulator. All the flags
are affected.
Examples: 1) ANA B 2) CMA
Branch instructions

Branch instructions change the sequence of the program execution unconditionally or
conditionally. The condition of flags is used to take the decision for conditional branches. No
flags are affected.
Examples: 1) JMP 5000H 2) JNZ 5000H
Machine control instructions

The instructions dealing with interrupt handling and system operations are classified
into this category. No flags are affected.
Examples: 1) HLT 2) EI
Instruction set
Data Transfer Instructions

S.No Instruction Example

1.

Move - Copy from source to destination
MOV Rd, Rs
MOV M, Rs
MOV Rd, M

MOV B, C
MOV M, A
MOV B, M

This instruction copies the contents of the source register into the destination
register; the contents of the source register are not altered.

2.

Move immediate 8-bit
MVI Rd, data
MVI M, data

MVI B, 50H
MVI M, 50H

The 8-bit data is stored in the destination register or memory.

3.
Load accumulator direct LDA 16-bit
address

LDA 5000H

The contents of a memory location, specified by a 16-bit address in the operand,

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

are copied to the accumulator.

4.

Load accumulator indirect
LDAX Reg. pair

LDAX B
LDAX D

The contents of the designated register pair point to a memory location. This
instruction copies the contents of that memory location into the accumulator.

5.
Load register pair immediate
LXI Reg. pair, 16-bit data

LXI B, 5000H
LXI D, 5000H
LXI H, 5000H
LXI SP, 5000H

The instruction loads 16-bit data in the register pair designated in the operand.

6.

Load H and L registers direct
 LHLD 16-bit address

LHLD 5000H

The instruction copies the contents of the memory location pointed by the 16-
bit address into register L and copies the contents of the next memory location
into register H.

7.

Store accumulator direct
STA 16-bit address

STA 5000H

The contents of the accumulator are copied into the memory location specified
by the operand.

8.

Store accumulator indirect
STAX Rx

STAX B
STAX D

The contents of the accumulator are copied into the memory location specified
by the contents of the operand (register pair).

9.

Store H and L registers direct
SHLD 16-bit address

SHLD 5000H

The contents of register L are stored into the memory location specified by the
16-bit address in the operand and the contents of H register are stored into the
next memory location.

10.

Exchange H and L with D and E
XCHG

XCHG

The contents of register H are exchanged with the contents of register D, and
the contents of register L are exchanged with the contents of register E.

11.

Copy H and L registers to the stack
pointer
SPHL

SPHL

Loads the contents of the H and L registers into the stack pointer register.

12.

Exchange H and L with top of stack
pointer
XTHL

XTHL

The contents of the L register are exchanged with the stack location pointed by
the contents of the stack pointer register. The contents of the H register are
exchanged with the next stack location (SP+1).

13.

Push register pair onto stack
PUSH Reg. pair(PSW ‘Processor Status
Word’ means Accumulator and Flag
register)

PUSH B
PUSH D
PUSH H
PUSH PSW

The contents of the register pair designated in the operand are copied onto the
stack.

14. Pop off stack to register pair POP B

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

POP Reg. pair POP D
POP H
POP PSW

The contents of the memory location pointed out by the stack pointer register
are copied to registers specified.

15.

Output data from accumulator to a port
with 8-bit address
OUT 8-bit port address

OUT 50H

The contents of the accumulator are copied into the I/O port specified by the
operand.

16.

Input data to accumulator from a port
with 8-bit address
IN 8-bit port address

IN 50H

The contents of the input port designated in the operand are read and loaded
into the accumulator.

Arithmetic Instructions
S.No Instruction Example

1.

Add register or memory to accumulator
ADD R
ADD M

ADD B
ADD M

The contents of the operand (register or memory) are added to the contents of
the accumulator and the result is stored in the accumulator.

2.

Add register to accumulator with carry
ADC R
ADC M

ADC B
ADC M

The contents of the operand (register or memory) and the Carry flag are added
to the contents of the accumulator and the result is stored in the accumulator.

3.

Add immediate to accumulator
ADI 8-bit data

ADI 45H

The 8-bit data (operand) is added to the contents of the accumulator and the
result is stored in the accumulator.

4.

Add immediate to accumulator with
carry
ACI 8-bit data

ACI 45H

The 8-bit data (operand) and the Carry flag are added to the contents of the
accumulator and the result is stored in the accumulator.

5.

Add register pair to H and L registers
DAD Reg. pair

DAD H

The 16-bit contents of the specified register pair are added to the contents of the
HL register and the sum is stored in the HL register.

6.

Subtract register or memory from
accumulator
SUB R
SUB M

SUB B
SUB M

The contents of the operand (register or memory) are subtracted from the
contents of the accumulator, and the result is stored in the accumulator.

7.
Subtract source and borrow from
accumulator
SBB R

SBB B

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

SBB M SBB M
The contents of the operand (register or memory) and the Borrow (carry flag)
are subtracted from the contents of the accumulator and the result is placed in
the accumulator.

8.

Subtract immediate from accumulator
SUI 8-bit data

SUI 45H

The 8-bit data (operand) is subtracted from the contents of the accumulator and
the result is stored in the accumulator.

9.

Subtract immediate from accumulator
with borrow
SBI 8-bit data

SBI 45H

The 8-bit data (operand) and the Borrow (carry flag) are subtracted from the
contents of the accumulator and the result is stored in the accumulator.

10.

Increment register or memory by 1
INR R
INR M

INR B
INR M

The content of the designated register or memory is incremented by 1 and the
result is stored in the same place.

11.

Increment register pair by 1
 INX Reg. pair

INX B
INX D
INX H

The contents of the designated register pair are incremented by 1 and the result
is stored in the same place.

12.

Decrement register or memory by 1
DCR R
DCR M

DCR B
DCR M

The content of the designated register or memory is decremented by 1 and the
result is stored in the same place.

13.

Decrement register pair by 1
DCX Reg. pair

DCX B
DCX D
DCX H

The contents of the designated register pair are decremented by 1 and the result
is stored in the same place.

14.

Decimal adjust accumulator
DAA

DAA

The contents of the accumulator are changed from a binary value to two 4-bit
binary coded decimal (BCD) digits. If the value of the low-order 4-bits in the
accumulator is greater than 9 or if AC flag is set, the instruction adds 6 to the
low-order four bits If the value of the high-order 4-bits in the accumulator is
greater than 9 or if the Carry flag is set, the instruction adds 6to the high-order
four bits.

Logic and bit manipulation instructions
S.No Instruction Example

1.

Compare register or memory with
accumulator
CMP R
CMP M

CMP B
CMP M

The contents of the operand (register or memory) are compared with the
contents of the accumulator. Both contents are preserved. The result of the

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

comparison is shown by setting the flags of the PSW as follows:
if (A) < (reg/mem): carry flag is set
if (A) = (reg/mem): zero flag is set
if (A) > (reg/mem): carry and zero flags are reset

2.

Compare immediate with accumulator
CPI 8-bit data

CPI 50H

The second byte (8-bit data) is compared with the contents of the accumulator.
The values being compared remain unchanged. The result of the comparison is
shown by setting the flags of the PSW as follows:
if (A) < data: carry flag is set
if (A) = data: zero flag is set
if (A) > data: carry and zero flags are reset

3.

Logical AND register or memory with
accumulator
ANA R
ANA M

ANA B
ANA M

The contents of the accumulator are logically ANDed (bitwise) with the
contents of the operand (register or memory), and the result is placed in the
accumulator.

4.

Logical AND immediate with
accumulator
ANI 8-bit data

ANI 50H

The contents of the accumulator are logically ANDed with the 8-bit data
(operand) and the result is placed in the accumulator.

5.

Exclusive OR register or memory with
accumulator
XRA R
XRA M

XRA B
XRA M

The contents of the accumulator are Exclusive ORed with the contents of the
operand (register or memory), and the result is placed in the accumulator.

6.

Exclusive OR immediate with
accumulator
 XRI 8-bit data

XRI 50H

The contents of the accumulator are Exclusive ORed with the 8-bit data
(operand) and the result is placed in the accumulator.

7.

Logical OR register or memory with
accumulator
ORA R
ORA M

ORA B
ORA M

The contents of the accumulator are logically ORed with the contents of the
operand (register or memory), and the result is placed in the accumulator.

8.

Logical OR immediate with accumulator
ORI 8-bit data

ORI 50H

The contents of the accumulator are logically ORed with the 8-bit data
(operand) and the result is placed in the accumulator.

9.

Rotate accumulator left
RLC

RLC

Each binary bit of the accumulator is rotated left by one position. Bit D7 is
placed in the position of D0 as well as in the Carry flag.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

10.

Rotate accumulator right
RRC

RRC

Each binary bit of the accumulator is rotated right by one position. Bit D0 is
placed in the position of D7 as well as in the Carry flag.

11.

Rotate accumulator left through carry
RAL

RAL

Each binary bit of the accumulator is rotated left by one position through the
Carry flag. Bit D7 is placed in the Carry flag, and the Carry flag is placed in the
least significant position D0.

12.

Rotate accumulator right through carry
RAR

RAR

Each binary bit of the accumulator is rotated right by one position through the
Carry flag. Bit D0 is placed in the Carry flag, and the Carry flag is placed in the
most significant position D7.

13.

Complement accumulator
CMA

CMA

The contents of the accumulator are complemented.

14.
Complement carry
CMC

CMC

The Carry flag is complemented.

15.
Set Carry
STC

STC

The Carry flag is set to 1.
Branch instructions

S.No Instruction Example

1.

Jump unconditionally
JMP 16-bit address

JMP 5000H

The program sequence is transferred to the memory location specified by the
16-bit address given in the operand.

2.

Jump conditionally J
condition 16-bit address

JC 5000H
JNC 5000H
JP 5000H
JM 5000H
JZ 5000H
JNZ 5000H
JPE 5000H
JPO 5000H

The program sequence is transferred to the memory location specified by the
16- bit address given in the operand based on the specified flag.

Opcode Description Flag Status
JC Jump on Carry CY = 1

JNC Jump on No Carry CY = 0
JP Jump on Positive S = 0
JM Jump on Minus S = 1
JZ Jump on Zero Z = 1

JNZ Jump on No Zero Z = 0
JPE Jump on Parity Even P = 1
JPO Jump on Parity Odd P = 0

3. Unconditional subroutine call CALL 5000H

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

CALL 16-bit address
The program sequence is transferred to the memory location specified by the
16- bit address given in the operand. Before the transfer, the address of the next
instruction after CALL (the contents of the program counter) is pushed onto the
stack.

4.

Call conditionally C
condition 16-bit address

CC 5000H
CNC 5000H
CP 5000H
CM 5000H
CZ 5000H
CNZ 5000H
CPE 5000H
CPO 5000H

The program sequence is transferred to the memory location specified by the
16- bit address given in the operand based on the specified flag of the PSW as
described below. Before the transfer, the address of the next instruction after the
call (the contents of the program counter) is pushed onto the stack.

Opcode Description Flag Status
CC Call on Carry CY = 1

CNC Call on No Carry CY = 0
CP Call on Positive S = 0
CM Call on Minus S = 1
CZ Call on Zero Z = 1

CNZ Call on No Zero Z = 0
CPE Call on Parity Even P = 1
CPO Call on Parity Odd P = 0

5.

Return from subroutine unconditionally
RET

RET

The program sequence is transferred from the subroutine to the calling program.
The two bytes from the top of the stack are copied into the program counter,
and program execution begins at the new address.

6.

Return from subroutine conditionally R
condition 16-bit address

RC 5000H
RNC 5000H
RP 5000H
RM 5000H
RZ 5000H
RNZ 5000H
RPE 5000H
RPO 5000H

The program sequence is transferred from the subroutine to the calling program
based on the specified flag of the PSW as described below. The two bytes from
the top of the stack are copied into the program counter, and program execution
begins at the new address.

Opcode Description Flag Status
RC Return on Carry CY = 1

RNC Return on No Carry CY = 0
RP Return on Positive S = 0
RM Return on Minus S = 1
RZ Return on Zero Z = 1

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

RNZ Return on No Zero Z = 0
RPE Return on Parity Even P = 1
RPO Return on Parity Odd P = 0

7.

Load Program Counter with HL
Contents
PCHL

PCHL

The contents of registers H and L are copied into the program counter. The
contents of H are placed as the high-order byte and the contents of L as the low-
order byte.

8.

Restart
RST 0-7

RST 0
RST 1
RST 2
RST 3
RST 4
RST 5
RST 6
RST 7

The RST instruction is equivalent to a 1-byte call instruction to one of eight
memory locations depending upon the number. The addresses are:

Instruction Restart Address
RST 0 0000H
RST 1 0008H
RST 2 0010H
RST 3 0018H
RST 4 0020H
RST 5 0028H
RST 6 0030H
RST 7 0038H

Machine control instructions
S.No Instruction Example

1.

No operation
NOP

NOP

No operation is performed. The instruction is fetched and decoded. However no
Operation is executed.

2.

Halt and enter wait state
HLT

HLT

The CPU finishes executing the current instruction and halts any further
execution. An interrupt or reset is necessary to exit from the halt state.

3.

Disable interrupts
DI

DI

The interrupt enable flip-flop is reset and all the interrupts except the TRAP are
disabled.

4.

Enable interrupt
EI

EI

The interrupt enable flip-flop is set and all interrupts are enabled. No flags are
affected.

5.
Read interrupt mask
RIM

RIM

This is a multipurpose instruction used to read the status of interrupts 7.5, 6.5,

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

5.5 and read serial data input bit. The instruction loads eight bits in the
accumulator with the following interpretations.

6.

Set interrupt mask
SIM

SIM

This is a multipurpose instruction and used to implement the8085 interrupts 7.5,
6.5, 5.5, and serial data output. The instruction interprets the accumulator
contents as follows.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

Addressing modes
The method of specifying the location of operand in an instruction is called

addressing mode. There are five types of addressing modes in 8085 microprocessor.
1. Direct addressing mode
2. Immediate addressing mode
3. Register addressing mode
4. Register indirect addressing mode
5. Implicit (or) implied addressing mode
Direct addressing mode

In direct addressing mode, the address of the operand is directly specified in the
instruction. In this addressing mode, the instruction is two or three bytes long. The first byte
is the Opcode. The operand may be a 16-bit (2 bytes) memory address or an 8-bit (1 byte)
port address.
Examples:
S. No Instruction Remarks

1 STA 5000

This instruction stores the content of the
accumulator in memory location 5000.
Here, the memory address is given directly in the
instruction.

2 LDA 5000

This instruction loads the data from memory
location 5000 accumulator.
Here, the memory address is given directly in the
instruction.

3 IN 80
This instruction loads the data from input port 80.
Here, the port address is directly given in the
instruction.

Immediate addressing mode
In immediate addressing mode, the operand itself is immediately given after the

Opcode. The instruction is two or three bytes long. The first byte is the Opcode. The operand
may be a 16-bit (2 bytes) immediate data or an 8-bit (1 byte) immediate data.
Examples:
S. No Instruction Remarks

1 MVI A, 50

This instruction immediately moves the data 50 into
the accumulator.
Here, the data is given immediately after the
Opcode.

2 LXI B, 2050

This instruction immediately moves the data 2050
into the register pair BC. 20 to B register and 50 to
C register.
Here, the data is given immediately after the
Opcode.

Register addressing mode
In register addressing mode, a register is specified as the operand in the instruction.

The instruction is one byte long. The register name is specified in the Opcode itself.
Examples:
S. No Instruction Remarks

1 ADD B
This instruction adds the content of B register with
the accumulator.
Here, the data is in the register B.

2 MOV C, D This instruction moves the D register value to C

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

register.
Here, C and D registers are specified as the
operands.

Register indirect addressing mode
In register indirect addressing mode, the content of the register pair is used as the

address of the operand in the instruction. The instruction is one byte long. The register pair
contains the 16-bit address of the memory location where the actual operand is stored.
Examples:
S. No Instruction Remarks

1 STAX B

This instruction stores the accumulator value in
memory location whose address is specified by the
BC register pair.
Here, the address is indirectly specified in the
register pair.

2 MOV A, M

This instruction moves the data from memory to
accumulator. M means memory whose address is
specified in HL register pair.
Here, address of the operand is indirectly specified
in the HL register pair.

Implicit or Implied addressing mode
In implied addressing mode, a particular register is implicitly specified as the operand

in the instruction. The instruction is one byte long. This addressing mode is also known as
implied addressing mode and inherent addressing mode.
Examples:
S. No Instruction Remarks

1 CMA

This instruction complements the contents of the
accumulator.
Here, Accumulator is implicitly specified in the
instruction.

2 RLC

This instruction rotates the contents of the
accumulator left one time.
Here, Accumulator is implicitly specified in the
instruction.

Machine cycle and Instruction cycle
Machine cycle

Machine cycle is defined as the time required for completing one operation of
accessing memory, I/O or acknowledging an external request. Machine cycle is comprised of
T-states. T-state is defined as one subdivision of the operation performed in one clock period.
The following are the various machine cycles of 8085 microprocessor.
1. Opcode Fetch (OF)
2. Memory Read (MR)
3. Memory Write (MW)
4. I/O Read (IOR)
5. I/O Write (IOW)
6. Interrupt Acknowledge (IA)
7. Bus Idle (BI)

All instructions have at least one Opcode Fetch machine cycle. Depending on the type
of instruction one or more other machine cycles are required to complete the execution of the
instruction. The number and type of machine cycles for different instructions are shown in
table.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

S.No Instruction Number
of

machine
cycles

Machine
cycle – 1

Machine
cycle - 2

Machine
cycle - 3

Machine
cycle - 4

1 MOV A, B 1 OF - - -
2 MVIA,50H 2 OF MR - -
3 LDA 5000H 4 OF MR MR MR
4 STA 5000H 4 OF MR MR MW
5 IN 80H 3 OF MR IOR -
6 OUT 80H 3 OF MR IOW -

Opcode Fetch (OF) machine cycle of 8085
Each instruction of the microprocessor has one byte Opcode. The Opcode is stored in

memory. So, the processor executes the Opcode Fetch machine cycle to fetch the Opcode
from memory. Hence, every instruction starts with Opcode Fetch machine cycle. The time
taken by the microprocessor to execute the Opcode Fetch cycle is 4T (T- states). The first 3
T-states are used for fetching the Opcode from memory and the remaining T-state is used for
internal operations by the microprocessor. The timing diagram for Opcode Fetch machine
cycle is shown in figure

The steps in Opcode Fetch machine cycle are given in table.

S. No T state Operation

1

T1

The microprocessor places the higher order 8-bits of the
memory address on A15 – A8 address bus and the lower
order 8-bits of the memory address on AD7 – AD0
address / data bus.

2
The microprocessor makes the ALE signal HIGH and at
the middle of T1 state, ALE signal goes LOW.

3
The status signals are changed as IO/𝑀ഥ = 0, S1 =1 and S0
= 1. These status signals do not change throughout the OF
machine cycle.

4
T2

The microprocessor makes the 𝑅𝐷തതതത line LOW to enable
memory read and increments the Program Counter.

5 The contents on D7 – D0 (i.e. the Opcode) are placed on

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

the address / data bus.

6
T3

The microprocessor transfers the Opcode on the address /
data bus to Instruction Register (IR).

7
The microprocessor makes the 𝑅𝐷തതതത line HIGH to disable
memory read.

8 T4 The microprocessor decodes the instruction.
Memory Read Machine Cycle of 8085

Single byte instructions require only Opcode Fetch machine cycles. But, 2-byte and 3-
byte instructions require additional machine cycles to read the operands from memory. The
additional machine cycle is called Memory Read machine cycle. For example, the instruction
MVI A, 50H requires one OF machine cycle to fetch the operand from memory and one MR
machine cycle to read the operand (50H) from memory. The MR machine cycle takes 3 T-
states.
The timing diagram for Memory Read machine cycle is shown in figure

Timing Diagram for Memory Read Machine Cycle The steps in Memory Read machine cycle
are given in table.

S. No T state Operation

1

T1

The microprocessor places the higher order 8-bits of the
memory address on A15 – A8 address bus and the lower
order 8-bits of the memory address on AD7 – AD0
address / data bus.

2
The microprocessor makes the ALE signal HIGH and at
the middle of T1 state, ALE signal goes LOW.

3
The status signals are changed as IO/𝑀ഥ = 0, S1 =1 and S0
= 0. These status signals do not change throughout the
memory read machine cycle.

4
T2

The microprocessor makes the 𝑅𝐷തതതത line LOW to enable
memory read and increments the Program Counter.

5
The contents on D7 – D0 (i.e. the data) are placed on the
address / data bus.

6
T3

The data loaded on the address / data bus is moved to the
microprocessor.

7
The microprocessor makes the 𝑅𝐷തതതതline HIGH to disable
the memory read operation.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

Memory Write Machine Cycle of 8085
Microprocessor uses the Memory Write machine cycle for sending the data in one of

the registers to memory. For example, the instruction STA 5000H writes the data in
accumulator to the memory location 5000H. The MW machine cycle takes 3 T-states.
The timing diagram for Memory Write machine cycle is shown in figure

The steps in Memory Write machine cycle are given in table.

S. No T state Operation

1

T1

The microprocessor places the higher order 8-bits of the
memory address on A15 – A8 address bus and the lower
order 8-bits of the memory address on AD7 – AD0
address / data bus.

2
The microprocessor makes the ALE signal HIGH and at
the middle of T1 state, ALE signal goes LOW.

3
The status signals are changed as IO/𝑀ഥ = 0, S1 =0 and S0
= 1. These status signals do not change throughout the
memory write machine cycle.

4
T2

The microprocessor makes the 𝑊𝑅തതതതത line LOW to enable
memory write.

5
The contents of the specified register are placed on the
address / data bus.

6
T3

The data placed on the address / data bus is transferred to
the specified memory location.

7
The microprocessor makes the 𝑊𝑅തതതതത line HIGH to disable
the memory write operation.

I/O Read Machine Cycle of 8085
Microprocessor uses the I/O Read machine cycle for receiving a data byte from the

I/O port or from the peripheral in I/O mapped I/O systems. The IN instruction uses this
machine cycle during execution. The IOR machine cycle takes 3 T-states.
The timing diagram for I/O Read machine cycle is shown in figure

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

The steps in I/O Read machine cycle are given in table.

S. No T state Operation

1

T1

The microprocessor places the address of the I/O port
specified in the instruction on A15 – A8 address bus and
also on AD7 – AD0 address / data bus.

2
The microprocessor makes the ALE signal HIGH and at
the middle of T1 state, ALE signal goes LOW.

3
The status signals are changed as IO/𝑀ഥ = 0, S1 =1 and S0
= 0. These status signals do not change throughout the I/O
read machine cycle.

4
T2

The microprocessor makes the 𝑅𝐷തതതത line LOW to enable
I/O read.

5
The contents on D7 – D0 (i.e. the data) are placed on the
address / data bus.

6
T3

The data loaded on the address / data bus is moved to the
microprocessor ie., to the accumulator.

7
The microprocessor makes the 𝑅𝐷തതതത line HIGH to disable
the I/O read operation.

I/O Write Machine Cycle of 8085
Microprocessor uses the I/O Write machine cycle for sending a data byte to the I/O

port or to the peripheral in I/O mapped I/O systems. The OUT instruction uses this machine
cycle during execution. The IOR machine cycle takes 3 T-states.
The timing diagram for I/O Write machine cycle is shown in figure

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

The steps in I/O Read machine cycle are given in table.
S. No T state Operation

1

T1

The microprocessor places the address of the I/O port
specified in the instruction on A15 – A8 address bus and
also on AD7 – AD0 address / data bus.

2
The microprocessor makes the ALE signal HIGH and at
the middle of T1 state, ALE signal goes LOW.

3
The status signals are changed as IO/𝑀ഥ = 0, S1 =0 and S0
= 1. These status signals do not change throughout the I/O
write machine cycle.

4
T2

The microprocessor makes the 𝑊𝑅തതതതത line LOW to enable
I/O write.

5
The contents of the Accumulator are placed on the address
/ data bus.

6
T3

The data placed on the address / data bus is transferred to
the specified I/O port.

7
The microprocessor makes the 𝑊𝑅തതതതത line HIGH to disable
the I/O write operation.

Instruction cycle
Timing diagram for MOV Rd, Rs (or MOV r1, r2) instruction

MOV Rd, Rs instruction moves (copies) the contents of the source register (Rs) into
the destination register (Rd). It is a single byte instruction. It has only Opcode Fetch machine
cycle.
Some examples for MOV Rd, Rs instruction:
1. MOV A, B
2. MOV C, L

The time taken by the processor to execute the Opcode Fetch cycle is 4T (T states).
The first 3 T-states are used for fetching the Opcode from memory and the remaining T-state
is used for internal operations by the microprocessor. The timing diagram for MOV Rd, Rs
(Opcode Fetch machine cycle) is shown in figure. It has 4 T states.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

The steps in I/O Read machine cycle are given in table.
S. No T state Operation

1

T1

The microprocessor places the higher order 8- bits of the
Program Counter on A15 – A8 address bus and the lower
order 8-bits of the Program Counter on AD7 – AD0
address / data bus.

2
The microprocessor makes the ALE signal HIGH and at
the middle of T1 state, ALE signal goes LOW.

3
The status signals are changed as IO/𝑀ഥ = 0, S1 =1 and S0
= 1. These status signals do not change throughout the OF
machine cycle.

4
T2

The microprocessor makes the 𝑅𝐷തതതത line LOW to enable
memory read (opcode fetch) and increments the Program
Counter.

5
The contents on D7 – D0 (i.e. the Opcode) are placed on
the address / data bus.

6
T3

The microprocessor transfers the Opcode on the address /
data bus to Instruction Register (IR).

7 The microprocessor decodes the instruction.

8 T4
The data in the register Rs (r2) is moved to the register Rd
(r1).

I/O Mapping and Interrupts
I/O interfacing

There are two methods of interfacing the Input / Output devices with the microprocessor.
They are,

1) Memory mapped I/O
2) I/O mapped I/O.

Memory mapped I/O

In this method the I/O devices are treated like the memory. A part of the memory
address space is used for the I/O devices. The memory mapped I/O scheme is shown in figure

In memory mapped I/O scheme, the same address space is used for both memory and I/O

devices.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

 The microprocessor uses the sixteen address line A0 – A7 and A8 – A15 for the
memory as well as for the I/O devices.

 The I/O devices share the address space with the memory. All the memory related
instructions are used for addressing I/O devices also.

 No separate IN and OUT instructions are required in memory mapped I/O scheme.
 IO/𝑀ഥ pin is not required.

Steps for memory operations (memory read and memory write):
1. When the memory related instructions like LDA and STA are used, the
microprocessor places the 16-bit address on the address bus.
2. 𝑅𝐷തതതതis activated for read operation and 𝑊𝑅തതതതത is activated for write operation.
Steps for I/O operations (I/O read and I/O write):
The same steps used for memory operations are used for I/O operations also.
I/O mapped I/O

In this method, I/O devices are treated as I/O devices and memory is treated as memory.
Separate address space is used for memory and I/O. The I/O mapped I/O scheme is shown in
figure.
 In I/O mapped I/O scheme, the microprocessor uses the sixteen address lines A0 – A7

and A8 – A15 for the memory and eight address lines A0 to A7to identify an input /
output device.

 Here, the full address space 0000 – FFFF is used for the memory and a separate
address space 00 – FF is used for the I/O devices.

 Hence, the microprocessor can address 65536 (216) memory locations 256 (28) input
devices and 256 (28) output devices separately.

 IN and OUT instructions are used to activate the IO/𝑀ഥ signal.
 When IO/𝑀ഥ is low, the memory is selected for reading and writing operations.
 When IO/𝑀ഥ is high, the I/O port is selected for reading and writing operations.

 0000 - FFFF

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

Steps for memory operations (memory read and memory write):
1. When the memory related instructions like LDA and STA are used, the microprocessor
places the 16-bit address on the address bus.
2. The microprocessor makes the IO/𝑀ഥ line low.
3. The microprocessor makes the 𝑅𝐷തതതത low for read operation and 𝑊𝑅തതതതത low for write operation.
Steps for I/O operations (I/O read and I/O write):
1. When the I/O related instructions like IN and OUT are used, the microprocessor places the
8-bit address on the address bus A0 – A7 as well as A8 – A15.
2. IO/𝑀 line is made high.
3. The microprocessor makes the 𝑅𝐷തതതത low for read operation and 𝑊𝑅തതതതത low for write operation.
Differences between Memory mapped I/O ad I/O mapped I/O

S.No Memory mapped I/O

I/O mapped I/O

1. 16-bit device address. 8-bit device address.

2.
Data is transferred between any
general-purpose register and I/O port.

Data is transferred only between
accumulator and I/O port.

3.
The memory map (64K) is shared
between I/O device and system
memory.

The I/O map is independent of the
memory map; 256 input devices and 256
output devices can be connected.

4.
More hardware is required to decode
16- bit address.

Less hardware is required to decode 8-bit
address.

5.
Arithmetic or logic operation can be
directly performed with I/O data.

Arithmetic or logical operation cannot be
directly performed with I/O data.

6. IO/𝑀 pin is not required. IO/𝑀 pin is required.

7.
Instructions like LDA, STA, MOV R,M
and ADD M are used.

IN and OUT instructions are used.

Interrupts
Interrupts are the signals send by an external device to the microprocessor to request

the microprocessor to perform a particular task or work. Interrupts are used for data transfer
between the peripheral and the microprocessor. The microprocessor will check the interrupts
always at the 2nd T-state of last machine cycle. If there is any interrupt, it accepts the
interrupt and sends the 𝐼𝑁𝑇𝐴 signal to the peripheral. The microprocessor executes an
interrupt service routine (ISR) stored in memory. It returns to the main program by RET
instruction, after the ISR is executed. The interrupt process is shown in figure

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

Types of interrupts
There are six types of interrupts. They are,
1. Hardware interrupts
2. Software interrupts
3. Maskable interrupts
4. Non-maskable interrupts
5. Vectored interrupts
6. Non-vectored interrupts
Hardware interrupts: These interrupts are given by the peripheral devices to the interrupt
pin (hardware) of the microprocessor. Hardware interrupts are also called external interrupts.
Software interrupts: These interrupts are internally generated within the microprocessor
using software instructions. Software interrupts are also called internal interrupts.
Maskable interrupts: These external interrupts can be delayed or rejected by the
microprocessor.
Non-maskable interrupts: These external interrupts cannot be delayed or rejected by the
microprocessor. Non-maskable interrupts are used for handling emergency situations.
Vectored interrupts: When the address of the Interrupt Service Routine (ISR) is fixed
within the microprocessor itself, then the interrupt is called Vectored interrupt.
Non-vectored interrupts: When the address of the Interrupt Service Routine (ISR) is
supplied by the peripheral device, then the interrupt is called Non-vectored interrupt.
8085 interrupts
In 8085 microprocessors, there are 5 interrupts as shown in figure
1. TRAP
2. RST 5.5
3. RST 6.5
4. RST 7.5
5. INTR

In additional to these hardware interrupts, 8085 microprocessor has eight software

interrupts. The RESTART instructions RST 0 to RST 7 are software interrupt instructions.
Interrupt priority

The microprocessor can respond to only one interrupt at one time. When multiple
(more than one) interrupts occur simultaneously, the microprocessor will service the
interrupts in their fixed priority order. Interrupt having the highest priority level will be
serviced first. In 8085, TRAP interrupt has the highest priority and INTR has the lowest
priority.
TRAP
 This interrupt is a non-maskable interrupt. It is unaffected by any mask or interrupt

enable.
 It is a vectored interrupt. The interrupt vector address is 0024H.
 TRAP has the highest priority level.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

 TRAP interrupt is edge and level triggered. This means that the TRAP must go high
and remain high until it is acknowledged.

 In emergency situations like sudden power failure, it executes an ISR and sends the
data from main memory to backup memory.

RST 7.5
 The RST 7.5 interrupt is a maskable interrupt.
 It is a vectored interrupt. The interrupt vector address is 003CH.
 It has the second highest priority.
 It is edge triggered. ie. Input goes to high and no need to maintain high state until it is

recognized and acknowledged.
RST 6.5
 The RST 6.5 interrupt is a maskable interrupt.
 It is a vectored interrupt. The interrupt vector address is 0034H.
 It has the third highest priority.
 It is level triggered. ie. Input goes to high and stays high until it is recognized and

acknowledged.
RST 5.5
 The RST 5.5 interrupt is a maskable interrupt.
 It is a vectored interrupt. The interrupt vector address is 002CH.
 It has the fourth highest priority.
 It is level triggered. ie. Input goes to high and stays high until it is recognized and

acknowledged.
INTR
 INTR is a maskable interrupt.
 It is a non- vectored interrupt. After receiving 𝐼𝑁𝑇𝐴തതതതതതത, the peripheral has to supply the

address of ISR.
 It has the lowest priority.
 It is a level triggered. ie. Input goes to high and it is necessary to maintain
 high state until it is recognized and acknowledged.

Process of INTR interrupt
1. The interrupt process should be enabled using the EI instruction.
2. The 8085 checks for an interrupt during the execution of every instruction.
3. If INTR is high, the microprocessor completes current instruction, disables the interrupt

and sends 𝐼𝑁𝑇𝐴 signal to the peripheral device.
4. 𝐼𝑁𝑇𝐴 allows the peripheral device to send an RST instruction through data bus.
5. Upon receiving the 𝐼𝑁𝑇𝐴 signal, the microprocessor saves the memory location of the next

instruction on the stack and the program is transferred to ‘call’ location (ISR Call)
specified by the RST instruction.

6. Microprocessor executes the ISR.
7. ISR must include the ‘EI’ instruction to enable the further interrupt within the program.
8. The RET instruction at the end of the ISR retrieves the return address from the stack and

the program is transferred back to main program which was interrupted.
Instructions for Interrupts handling in 8085 microprocessors
There are four instructions available for interrupts handling. They are,
1. DI (Disable Interrupt)
2. EI (Enable Interrupt)
3. SIM (Set Interrupt Mask)
4. RIM (Read Interrupt Mask)

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

DI (Disable Interrupt)
This instruction resets the Interrupt Enable Flip-flop inside the microprocessor. All

the interrupts except the TRAP are disabled.
EI (Enable Interrupt)

This instruction sets the Interrupt Enable Flip-flop inside the microprocessor. All the
interrupts are enabled.
SIM (Set Interrupt Mask)

This instruction is used to selectively mask (disable) and unmask (enable) RST 7.5,
RST 6.5 and RST 5.5 interrupts. This instruction is also used for serial data output. The SIM
the instruction uses the accumulator contents for masking and unmasking the interrupts.

RIM (Read Interrupt Mask)

This instruction is used to read the status of RST 7.5, RST 6.5 and RST 5.5 interrupts
like pending and enable / disable details. This instruction is also used for reading the serial
data. When the RIM instruction is given, the microprocessor loads the details into the
accumulator.

Bits D6, D5 and D4 give the pending details of RST 7.5, RST 6.5 and RST 5.5

interrupts respectively. Bits D2, D1 and D0 give the masked / unmasked details of RST 7.5,
RST 6.5 and RST 5.5 interrupts respectively. Bit D3 gives the status of Interrupt enable Flip-
flop.

MICROPROCESSOR & MIROCONTROLLER

GVN COLLEGE DEPARTMENT OF ELETRONICS

Summary of 8085 interrupts
Interrupt Vector address Priority Type

TRAP 0024H
1

(Highest
priority)

Hardware interrupt
Vectored interrupt

Non-maskable interrupt

RST7.5 003CH 2
Hardware interrupt
Vectored interrupt
Maskable interrupt

RST6.5 0034H 3
Hardware interrupt
Vectored interrupt
Maskable interrupt

RST5.5 002CH 4
Hardware interrupt
Vectored interrupt
Maskable interrupt

INTR --
5

(Lowest
priority)

Hardware interrupt
Non-vectored interrupt

Maskable interrupt

RST
instruction

RST 0 - 0000H
RST 1 - 0008H
RST 2 - 0010H
RST 3 - 0018H
RST 4 - 0020H
RST 5 - 0028H
RST 6 - 0030H
RST 7 - 0038H

--
Software interrupt
Vectored interrupt
Maskable interrupt

