
MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

UNIT - III 
ASSEMBLER AND ADDRESSING MODES 

ASSEMBLING AND RUNNING AN 8051 PROGRAM 
1) First we use an editor to type a program,many excellent editors or word processorsare 
available that can be used to createand/or edit the program 
 Notice that the editor must be able toproducean ASCII file 
 For many assemblers, the file names followthe usual DOS conventions, but 

thesourcefile has the extension “asm“ or “src”,depending on which assembly you are 
using 

2) The “asm” source file containing the program codecreated in step 1 is fed to an 
8051assembler 
 The assembler converts the instructions into machinecode 
 The assembler will produce an object file and a list file 
 The extension for the object file is “obj” while the extension for the list file is “lst” 

3) Assembler require a third step called linking 
 The linker program takes one or more object code filesand produce an absolute object 

filewith the extension“abs” 
 This abs file is used by 8051 trainers that have amonitor program 

4) Next the “abs” file is fed into a programcalled “OH” (object to hex converter) 
whichcreates a file with extension “hex” that isready to burn into ROM 
 This program comes with all 8051assemblers 
 Recent Windows-based assemblers combinestep 2 through 4 into one step 

 

 
 
 



MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

 
STRUCTURE OF ASSEMBLY LANGUAGE PROGRAM 

An instruction may be represented on a line of maximum 128 characters, the general 
form being: 
[<label>:] [<opcode>[<operatives>] [;<comments>]] 
Where: 
<label> is a name, maximum 31 characters (letters, numbers or special characters _? @,), the 
first character being a letter or one of the special characters. Each label has a value attached 
and also a relative address in the segment where it belongs to. 
<opcode> the mnemonic of the instruction. 
<operatives> the operative (or operatives) associated with the instruction concordant to the 
syntax required for the instruction. It may be a constant, a symbol or expressions containing 
these. 
<comments> a certain text forego of the character “;”. comment is optional. It is for 
readability 
ASSEMBLER DIRECTIVES 
 It is a pseudo instruction. 
 It is not an executable. 
 It gives directions to Assembler 

Some examples of Assembler Directives 
ORG, END, EQU, DB, DW, DATA 
ORG:  

It gives direction to Assembler that the program should be started at the Address 
following ORG. 
Ex. ORG 8000h 
END: 

It gives direction to Assembler that the program ends at that point 
Ex. END 
EQU: 

It is used to give direction to Assembler to assign some value to some variable. 
Ex. EQU PI 3.14 
DB: Define Byte 

It directs the Assembler that the number following this DB is byte 
Ex. DB 39h 
DB 00110101b 
DATA: 

 It gives direction to Assembler that the numbers following DATA are the data 
Ex. DATA 32, 43,65,23,01 
DIFFERENT ADDRESSING MODES 
The method of specifying the data in instruction is called Addressing 
Types of Addressing Modes 
1. Register Addressing 
2. Indirect Addressing 
3. Direct Addressing 
4. Immediate Addressing 
5. Index Addressing 
Register Addressing 

In this Addressing mode, the registers (R0…R7, A, B, DPTR, CARRY) are used as 
operands. R0…R7 can be selected in any one of four modes. The modes can be selected in 
PSW register. 



MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

Ex. 
MOV A, R1 
In this mode, the content of R1 is moved to A 
ADD A, R3 
In this mode, the content of R3 is added with the content of A 
ANL A, R1 
In this mode, the content of R1 is AND immediate with the content of A  
Indirect Addressing  

In this Addressing mode, the operand’s address is specified in register R0,R1or DPTR  
To access the address register, the symbol ‘@’ is preceded with above register.  
Both internal and external RAM can be accessed in this mode. 8 bit address is specified in R0 
an R1 registers. 16 bit address is specified in DPTR  
Ex. 
MOV A,@R1  
In this mode, the content of address specified in R1 is moved to A  
ADD A,@R0  
In this mode, the content of address specified in R0 is added with the content of A  
MOVX A,@DPTR  
In this mode, the content of external memory address specified in DPTR is moved to A.  
‘X’ in the MOVX represent External memory.  
Direct Addressing  

In this mode of addressing, 8 bit address of operand is specified in instruction. 
Address of internal RAM is specified.  
Ex. 
MOV A,34h 
In this mode, the content of address 34h is moved to A  
ADD A,23h 
In this mode, the content of address 23h is added with the content of A  
ANL A,45h 
In this mode, the content of address 45h is AND immediate with the content of A  
Immediate Addressing  

In this addressing mode, the operand is data. The actual data is specified in the 
instruction itself. The symbol ‘#’ is proceeded with data. The data is accessed immediately.  
Ex. 
MOV A, #67h  
In this mode, the hexadecimal data 67 is moved to A  
ADD A, #89h  
In this mode, the hexadecimal data 89 is added with the content of A 
ANL A, #91 
In this mode the hexadecimal data 91 is AND immediate with the content of A 
Index Addressing 
This addressing mode is used access lookup table in program memory. 
Ex. 
MOVC A, @A+DPTR 



MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

 
PROGRAMS 
MULTIBYTE 
Multi byte numbers like 8254h and 65f3h may be added.  
i) Add f3 and 54 using ADD and store the result in memory location  
ii) Add 82 and 65 using ADDC and store the result in another location  
 

Label Mnemonics Comments 
 MOV DPTR ,#8200H memory address is loaded to store result 
 MOV R1,#00H R1 is initialized .It is used to store carry 
 MOV A,#F3H LSB of second data is moved to A 
 ADD A,#54H LSB of first data is added with A 
 MOVX @DPTR,A added value in A is moved to memory 
 INC DPTR DPTR is incremented 
 MOV A,#65H MSB of second data is moved to A 
 ADDC A,#82H MSB of first data is added with carry in A 
 MOVX @DPTR,A added value is moved to memory 
 INC DPTR DPTR is incremented to store 1 if carry 
 JNC NEXT if carry, jump to labeled NEXT 
 INC R1 R1 is incremented if carry available 

NEXT MOV A,R1 R1 value is moved to A 
 MOVX @DPTR,A value in A is moved to memory 

HLT SJMP HLT  
 
 
8 BIT MULTIPLICATION 

Assume that 8 bit data are available in memory address 8400h and 8401h and the 
result is to be stored in 8402h, 8403h  
 
 
 



MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

Label Mnemonics Comments 
 MOV DPTR,#8400H DPTR is initialized 
 MOVX A,@DPTR data in memory address 8400 is moved to A 
 MOV B,A value in A is moved to B 
 INC DPTR DPTR is incremented 
 MOVX A,@DPTR next data in address 8401 is moved to A 
 MUL AB both data are multiplied 
 INC DPTR DPTR is incremented 
 MOVX @DPTR,A low byte answer is moved to memory 
 MOV A,B high byte answer in B is moved to A 
 INC DPTR DPTR incremented 
 MOVX @DPTR,A high answer in A is moved to memory 

HLT SJMP HLT  
 
8 bit DIVISION  

Assume that 8 bit data (denominator) is available in memory address 8400h and data 
(Numerator) in 8401h and the quotient is to be stored in 8402h and remainder is to be stored 
in 8403h  

 
Label Mnemonics Comments 

 MOV DPTR,#8400H DPTR is initialized 
 MOVX A,@DPTR data(divisor) in memory address 8400 is 

moved toA 
 MOV B,A value in A is moved to B 
 INC DPTR DPTR is incremented 
 MOVX A,@DPTR next data(dividend) in address 8401 is 

moved to A 
 DIV AB data in A is divided by data in B 
 INC DPTR DPTR is incremented 
 MOVX @DPTR,A answer quotient is moved to memory 
 MOV A,B answer remainder in B is moved to A 
 INC DPTR DPTR incremented 
 MOVX @DPTR,A answer remainder in A is moved to memory 

HLT SJMP HLT  
BIGGEST NUMBER  

Assume that the data to be arranged are available in array which starts from 8401h 
and the array length is available in 8400h.  
The result is to be stored in 8500h  

Label Mnemonics Comments 
 MOV B, #00H to hold the biggest number, B is initialised 
 MOV DPTR ,#8400H DPTR initialized with8400 
 MOVX A, @DPTR array length in 8400 in moved to A 
 MOV R0,A value (array length) in A is copied into R0 

AGAIN INC DPTR DPTR incremented 
 MOVX A, @DPTR data in memory is moved to A 
 CJNE A,B , NEXT A and B compared. Carry will be generated if 

B is bigger 
NEXT JC L1 if carry ,jump to label L1 

 MOV B,A if no carry, move the value in A to B 



MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

L1 DJNZ R0, AGAIN array length is decremented and jump to  
label AGAIN till array length is 0 

 MOV DPTR,#8500H DPTR is initialized with 8500 to store bigger 
value in B 

 MOV A,B value in B (bigger value) is moved to A 
 MOVX @DPTR,A this value (bigger value) is moved to memory 

addressed by DPTR(8500) 
HLT SJMP HLT  

 
SMALLEST NUMBER  

Assume that the data are available in array which starts from 8401h and the array 
length is available in 8400h.The result is to be stored in 8500h  

Label Mnemonics Comments 
 MOV B, #00H to hold the biggest number, B is initialised 
 MOV DPTR ,#8400H DPTR initialized with8400 
 MOVX A, @DPTR array length in 8400 in moved to A 
 MOV R0,A value(array length) in A is copied into R0 

AGAIN INC DPTR DPTR incremented 
 MOVX A, @DPTR data in memory is moved to A 
 CJNE A,B , NEXT A and B compared. Carry will be generated 

if B is bigger 
NEXT JC L1 if carry ,jump to label L1 

 MOV B,A if no carry, move the value in A to B 
L1 DJNZ R0, AGAIN array length is decremented and jump to  

label AGAIN till array length is 0 
 MOV DPTR,#8500H DPTR is initialized with 8500 to store bigger 

value in B 
 MOV A,B value in B (bigger value) is moved to A 
 MOVX @DPTR,A this value (bigger value) is moved to memory 

addressed by DPTR(8500) 
HLT SJMP HLT  

 
ASCENDING ORDER  

Assume that the data to be arranged are available in array which starts from 8401h 
and the array length is assumed as 09 . 

Label Mnemonics Comments 
 MOV R0, #08H array length 08h(09-01) is stored 

AGAIN MOV A, R0 08h is moved to R1 
 MOV R1, A Data moved to R1 
 MOV DPTR, #8401H DPTR is initialized with 8401h 

BACK PUSH DPH 84 is saved in stack 
 PUSH DPL 01 is saved in stack 
 MOVX A, @DPTR first data is moved to A 
 MOV B, A this data is copied into B 
 INC DPTR DPTR incremented 
 MOVX A, @DPTR second data is moved to A 
 CJNE A,B, LOOP first data in B and next data in A are 

compared. Carry will  
generate if B value is bigger 



MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

LOOP JNC NEXT if no carry(second data is bigger)instruction 
labeled NEXT will be executed 

 POP DPL 01 from stack is moved to DPL 
 POP DPH 84 from stack is moved to DPH 
 MOVX @DPTR, A second data is moved is moved to first 

location 
 INC DPTR DPTR incremented 
 MOV A ,B first data in B is moved to A 
 MOVX @DPTR,A this first data is moved to second location 

NEXT DJNZ R1, BACK jump for next two data comparison 
 DJNZ R0, AGAIN jump for next scan 

HLT SJMP HLT stay at here 
 
DESCENDING ORDER  

Assume that the data to be arranged are available in array which starts from 8401h 
and the array length is assumed as 09 . 

Label Mnemonics Comments 
 MOV R0, #08H array length 08h(09-01) is stored 

AGAIN MOV A, R0 08h is moved to R1 
 MOV R1, A Data moved to R1 
 MOV DPTR, #8401H DPTR is initialized with 8401h 

BACK PUSH DPH 84 is saved in stack 
 PUSH DPL 01 is saved in stack 
 MOVX A, @DPTR first data is moved to A 
 MOV B, A this data is copied into B 
 INC DPTR DPTR incremented 
 MOVX A, @DPTR second data is moved to A 
 CJNE A,B, LOOP first data in B and next data in A are 

compared. Carry will  
generate if B value is bigger 

LOOP JC NEXT if carry(second data is smaller)instruction 
labeled NEXT will be executed 

 POP DPL 01 from stack is moved to DPL 
 POP DPH 84 from stack is moved to DPH 
 MOVX @DPTR, A second data is moved is moved to first 

location 
 INC DPTR DPTR incremented 
 MOV A ,B first data in B is moved to A 
 MOVX @DPTR,A this first data is moved to second location 

NEXT DJNZ R1, BACK jump for next two data comparison 
 DJNZ R0, AGAIN jump for next scan 

HLT SJMP HLT stay at here 
BCD TO ASCII CONVERSION  

To covert BCD number, each digit is separately considered and equivalent ASCII 
value is generated.  

Ex. To convert 65, 5is converted into ASCII value 35 and 6 is converted into ASCII 
36. 
Assume that the BCD value 65 is stored in memory location 8400h and ASCII values are 
stored in 8401, 8402.  



MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

 
Label Mnemonics Comments 

 MOV DPTR,#8400H DPTR is initialized with 8400h 
 MOV XA, @DPTR First Data Is Moved To A 
 MOV R1,A Data moved to R1 
 ANL A,#0FH Get the Lower data 
 ORL A,#30H OR logic for 30h 
 INC DPTR DPTR incremented 
 MOVX @DPTR,A Second Data Is Moved To A 
 INC DPTR DPTR incremented 
 MOV A,R1 Data moved to R1 
 ANL A,#F0H Get the Upper data 
 SWAP A Move the lower value 
 ORL A,#30H OR logic for 30h 
 MOVX @DPTR,A Store the Result 

HLT SJMP HLT stay at here 
ASCII TO BINARY CONVERSION  

Assume that ASCII value is stored in 8400h and answer to be stored in 8401h  
Label Mnemonics Comments 

 MOV DPTR, #8400H DPTR is initialized with 8400h 
 MOV A, @DPTR First Data Is Moved To A 
 MOV R1, A Data moved to R1 
 CJNE A,#40H, NEXT first data in 40h and next data in A are 

compared. Carry  will generate if B value is 
bigger 

NEXT: JC LOOP if carry(second data is smaller)instruction 
labeled NEXT will be executed 

 CLR C Clear carry flag 
 SUBB A, #07H Subtract the value Data from 07 h 

LOOP: CLR C Clear carry flag 
 SUBB A, #30H Subtract the value Data from 30 h 
 INC DPTR DPTR incremented 
 MOVX @DPTR ,A Store the Result 

HLT SJMP HLT stay at here 
ODD PARITY GENERATOR  

Odd parity means that the total number of 1’s in data as well as in parity bit is ODD.  
Assume that the data 42H for which the parity is to be generated and the result is to be Stored 
in 8400h.  

The data 42h has 2 nos. of ‘1’s. So one bit is generated to make ODD parity.  
Label Mnemonics Comments 

 MOV DPTR, #8400H memory address is loaded in DPTR 
 MOV R1,#08 to rotate the data 8times,R1 is initialised 
 MOV R2,#00 counter initialized to count no.of ‘1’s 
 MOV A,#42h the data 42h is stored in A 

BACK: RRC A the data is rotated 
 JNC XXX if not carry, jump to label XXX 
 INC R2 if carry, R2 is incremented 

XXX DJNZ R1, BACK 8 rotation is checked 
 MOV A,R2 no. of 1 s in R2 is moved to A 



MICROPROCESSOR & MIROCONTROLLER 

GVN COLLEGE                                           DEPARTMENT OF ELETRONICS 

 MOV B,#02 to test the even ,that should be 
 DIV AB divide by 02 
 MOV A,B the remainder(it is 0 for even no of 1’s in 

data) is Move to A 
 CPL A A value is complemented 
 MOVX @DPTR,A, Complemented value is stored in memory 

HLT SJMP HLT  
EVEN PARITY GENERATOR  

Even parity means that the total number of 1’s in data as well as in parity bit is even. 
Assume that the data 42H for which the parity is to be generated and the result is to be Stored 
in 8400h.The data 42h has 2 nos. of ‘1’s. So NO need of one bit is generated to make even 
parity.  

Label Mnemonics Comments 
 MOV DPTR, #8400H memory address is loaded in DPTR 
 MOV R1,#08 to rotate the data 8times,R1 is initialised 
 MOV R2,#00 counter initialized to count no.of ‘1’s 
 MOV A,#42h the data 42h is stored in A 

BACK: RRC A the data is rotated 
 JNC XXX if not carry, jump to label XXX 
 INC R2 if carry, R2 is incremented 

XXX DJNZ R1, BACK 8 rotation is checked 
 MOV A,R2 no. of 1 s in R2 is moved to A 
 MOV B,#02 to test the even ,that should be 
 DIV AB divide by 02 
 MOV A,B the remainder(it is 0 for even no of 1’s in 

data) is Move to A 
 MOVX @DPTR,A, Complemented value is stored in memory 

HLT SJMP HLT stay at here 
 
TIME DELAY ROUTINE  

To hold the output or operation of controller, the controller must be forced into delay 
Routine. This delay may be increased by increasing number of loops.  
Delay Routine using single loop 
  

Label Mnemonics Comments 
 MOV R1,#FFH value FF is loaded in to R1 
 DJNZ R1, WAIT R1 is decremented till reach to zero 

HLT SJMP HLT stay at here 
Delay Routine using double loop 

Label Mnemonics Comments 
 MOV R1,#FFH R1 is initialized with FF 

LOOP MOV R2, #FEH R2 is initialized with FE 
WAIT DJNZ R2, WAIT R2 is decremented till reach to zero 

 DJNZ R1, LOOP once R2 reach zero, R1 is decremented till to 
zero and again R2 initialised with FE 

HLT SJMP HLT  
 


