MICROPROCESSOR & MIROCONTROLLER

UNIT - III
ASSEMBLER AND ADDRESSING MODES
ASSEMBLING AND RUNNING AN 8051 PROGRAM
1) First we use an editor to type a program,many excellent editors or word processorsare
available that can be used to createand/or edit the program
» Notice that the editor must be able toproducean ASCII file
» For many assemblers, the file names followthe usual DOS conventions, but
thesourcefile has the extension “asm® or “src”,depending on which assembly you are
using
2) The “asm” source file containing the program codecreated in step 1 is fed to an
8051assembler
» The assembler converts the instructions into machinecode
» The assembler will produce an object file and a list file
» The extension for the object file is “obj” while the extension for the list file is “Ist”
3) Assembler require a third step called linking
» The linker program takes one or more object code filesand produce an absolute object
filewith the extension*“abs”
» This abs file is used by 8051 trainers that have amonitor program
4) Next the “abs” file is fed into a programcalled “OH” (object to hex converter)
whichcreates a file with extension “hex” that isready to burn into ROM
» This program comes with all 8051assemblers
» Recent Windows-based assemblers combinestep 2 through 4 into one step

EDITOR

PROGRAM

myfile.asm

ASSEMBLER
PROGRAM

myfile.lst

myfile.ob] Other obj files

LINKER
PROGRAM

myfile.abs

l

OH

PROGRAM

myfile.hex

GVN COLLEGE DEPARTMENT OF ELETRONICS

MICROPROCESSOR & MIROCONTROLLER

STRUCTURE OF ASSEMBLY LANGUAGE PROGRAM
An instruction may be represented on a line of maximum 128 characters, the general
form being:
[<label>:] [<opcode>[<operatives>] [;<comments>]]
Where:
<label> is a name, maximum 31 characters (letters, numbers or special characters ? @,), the
first character being a letter or one of the special characters. Each label has a value attached
and also a relative address in the segment where it belongs to.
<opcode> the mnemonic of the instruction.
<operatives> the operative (or operatives) associated with the instruction concordant to the
syntax required for the instruction. It may be a constant, a symbol or expressions containing
these.
<comments> a certain text forego of the character “;”. comment is optional. It is for
readability
ASSEMBLER DIRECTIVES
» It is a pseudo instruction.
» It is not an executable.
» It gives directions to Assembler
Some examples of Assembler Directives
ORG, END, EQU, DB, DW, DATA
ORG:
It gives direction to Assembler that the program should be started at the Address
following ORG.
Ex. ORG 8000h
END:
It gives direction to Assembler that the program ends at that point
Ex. END
EQU:
It is used to give direction to Assembler to assign some value to some variable.
Ex. EQU PI1 3.14
DB: Define Byte
It directs the Assembler that the number following this DB is byte
Ex. DB 3%h
DB 00110101b
DATA:
It gives direction to Assembler that the numbers following DATA are the data
Ex. DATA 32, 43,65,23,01
DIFFERENT ADDRESSING MODES
The method of specifying the data in instruction is called Addressing
Types of Addressing Modes
1. Register Addressing
2. Indirect Addressing
3. Direct Addressing
4. Immediate Addressing
5. Index Addressing
Register Addressing
In this Addressing mode, the registers (R0...R7, A, B, DPTR, CARRY) are used as
operands. RO...R7 can be selected in any one of four modes. The modes can be selected in
PSW register.

GVN COLLEGE DEPARTMENT OF ELETRONICS

MICROPROCESSOR & MIROCONTROLLER

Ex.
MOV A, R1
In this mode, the content of R1 is moved to A
ADD A, R3
In this mode, the content of R3 is added with the content of A
ANL A, R1
In this mode, the content of R1 is AND immediate with the content of A
Indirect Addressing
In this Addressing mode, the operand’s address is specified in register RO,R1or DPTR
To access the address register, the symbol ‘@’ is preceded with above register.
Both internal and external RAM can be accessed in this mode. 8 bit address is specified in RO
an R1 registers. 16 bit address is specified in DPTR
Ex.
MOV A,@R1
In this mode, the content of address specified in R1 is moved to A
ADD A,@R0O
In this mode, the content of address specified in RO is added with the content of A
MOVX A,@DPTR
In this mode, the content of external memory address specified in DPTR is moved to A.
‘X’ in the MOVX represent External memory.
Direct Addressing
In this mode of addressing, 8 bit address of operand is specified in instruction.
Address of internal RAM is specified.
Ex.
MOV A,34h
In this mode, the content of address 34h is moved to A
ADD A,23h
In this mode, the content of address 23h is added with the content of A
ANL A,45h
In this mode, the content of address 45h is AND immediate with the content of A
Immediate Addressing
In this addressing mode, the operand is data. The actual data is specified in the
instruction itself. The symbol ‘#’ is proceeded with data. The data is accessed immediately.
Ex.
MOV A, #67h
In this mode, the hexadecimal data 67 is moved to A
ADD A, #8%h
In this mode, the hexadecimal data 89 is added with the content of A
ANL A, #91
In this mode the hexadecimal data 91 is AND immediate with the content of A
Index Addressing
This addressing mode is used access lookup table in program memory.
Ex.
MOVC A, @A+DPTR

GVN COLLEGE DEPARTMENT OF ELETRONICS

MICROPROCESSOR & MIROCONTROLLER

Indexed Addressing Mode

Instruction Opcode Bytes Cycles
MOVC A,@A +DPTR 93H 1 2
Program Memory
0204 e o
r |
0203 |
3 ACC | Data |
2072
0202 acc | 02 B e 3
0201
0200 Data
ADD
01FF T
01FE
01FD [o1 FE | DPTR
01FC DPH DPL
01FB 93
01FA i 01FC |
PC=PC+1
PROGRAMS
MULTIBYTE

Multi byte numbers like 8254h and 65f3h may be added.
1) Add f3 and 54 using ADD and store the result in memory location
i1) Add 82 and 65 using ADDC and store the result in another location

Label Mnemonics Comments
MOV DPTR ,#8200H memory address is loaded to store result
MOV R1,#00H R1 is initialized .It is used to store carry
MOV A #F3H LSB of second data is moved to A
ADD A #54H LSB of first data is added with A
MOVX @DPTR,A added value in A is moved to memory
INC DPTR DPTR is incremented
MOV A #65H MSB of second data is moved to A
ADDC A #82H MSB of first data is added with carry in A
MOVX @DPTR,A added value is moved to memory
INC DPTR DPTR is incremented to store 1 if carry
JNC NEXT if carry, jump to labeled NEXT
INCRI1 R1 is incremented if carry available

NEXT | MOV AR1 R1 value is moved to A
MOVX @DPTR,A value in A is moved to memory

HLT | SIMP HLT

8 BIT MULTIPLICATION
Assume that 8 bit data are available in memory address 8400h and 8401h and the
result is to be stored in 8402h, 8403h

GVN COLLEGE DEPARTMENT OF ELETRONICS

MICROPROCESSOR & MIROCONTROLLER

Label Mnemonics Comments
MOV DPTR,#8400H DPTR is initialized
MOVX A,@DPTR data in memory address 8400 is moved to A
MOV B,A value in A is moved to B
INC DPTR DPTR is incremented
MOVX A, @DPTR next data in address 8401 is moved to A
MUL AB both data are multiplied
INC DPTR DPTR is incremented
MOVX @DPTR,A low byte answer is moved to memory
MOV A.B high byte answer in B is moved to A
INC DPTR DPTR incremented
MOVX @DPTR,A high answer in A is moved to memory
HLT | SJMP HLT

8 bit DIVISION
Assume that 8 bit data (denominator) is available in memory address 8400h and data

(Numerator) in 8401h and the quotient is to be stored in 8402h and remainder is to be stored
in 8403h

Label Mnemonics Comments
MOV DPTR, #8400H DPTR is initialized
MOVX A, @DPTR data(divisor) in memory address 8400 is
moved toA
MOV B,A value in A is moved to B
INC DPTR DPTR is incremented
MOVX A, @DPTR next data(dividend) in address 8401 is
moved to A
DIV AB data in A is divided by data in B
INC DPTR DPTR is incremented
MOVX @DPTR,A answer quotient is moved to memory
MOV A,B answer remainder in B is moved to A
INC DPTR DPTR incremented
MOVX @DPTR,A answer remainder in A is moved to memory
HLT | SJMP HLT
BIGGEST NUMBER

Assume that the data to be arranged are available in array which starts from 8401h
and the array length is available in 8400h.
The result is to be stored in 8500h

Label Mnemonics Comments
MOV B, #00H to hold the biggest number, B is initialised
MOV DPTR #8400H DPTR initialized with8400
MOVX A, @DPTR array length in 8400 in moved to A
MOV RO,A value (array length) in A is copied into R0
AGAIN | INC DPTR DPTR incremented
MOVX A, @DPTR data in memory is moved to A
CINE A.B, NEXT A and B compared. Carry will be generated if
B is bigger
NEXT | JCLI if carry ,jump to label L1
MOV B,A if no carry, move the value in A to B

GVN COLLEGE DEPARTMENT OF ELETRONICS

MICROPROCESSOR & MIROCONTROLLER

L1 DINZ RO, AGAIN

array length is decremented and jump to
label AGAIN till array length is 0

MOV DPTR,#8500H DPTR is initialized with 8500 to store bigger
value in B

MOV AB value in B (bigger value) is moved to A

MOVX @DPTR,A this value (bigger value) is moved to memory

addressed by DPTR(8500)

HLT | SIMP HLT

SMALLEST NUMBER

Assume that the data are available in array which starts from 8401h and the array
length is available in 8400h.The result is to be stored in 8500h

Label Mnemonics

Comments

MOV B, #00H

to hold the biggest number, B is initialised

MOV DPTR ,#8400H

DPTR initialized with8400

MOVX A, @DPTR

array length in 8400 in moved to A

MOV RO,A

value(array length) in A is copied into R0

AGAIN | INC DPTR

DPTR incremented

MOVX A, @DPTR

data in memory is moved to A

CINE A,B, NEXT

A and B compared. Carry will be generated
if B is bigger

NEXT [JCLI1

if carry ,jump to label L1

MOV B,A

if no carry, move the value in A to B

L1 DINZ RO, AGAIN

array length is decremented and jump to
label AGAIN till array length is 0

MOV DPTR,#8500H DPTR is initialized with 8500 to store bigger
value in B

MOV A,B value in B (bigger value) is moved to A

MOVX @DPTR,A this value (bigger value) is moved to memory

addressed by DPTR(8500)

HLT | SIMP HLT

ASCENDING ORDER

Assume that the data to be arranged are available in array which starts from 8401h

and the array length is assumed as 09 .

Label Mnemonics Comments
MOV RO, #08H array length 08h(09-01) is stored
AGAIN | MOV A, RO 08h is moved to R1
MOV RI1, A Data moved to R1

MOV DPTR, #8401H

DPTR is initialized with 8401h

BACK | PUSH DPH

84 is saved in stack

PUSH DPL 01 is saved in stack
MOVX A, @DPTR first data is moved to A
MOV B, A this data is copied into B
INC DPTR DPTR incremented

MOVX A, @DPTR

second data i1s moved to A

CINE A,B, LOOP

first data in B and next data in A are
compared. Carry will

generate if B value is bigger

GVN COLLEGE

DEPARTMENT OF ELETRONICS

MICROPROCESSOR & MIROCONTROLLER

LOOP | JNC NEXT if no carry(second data is bigger)instruction
labeled NEXT will be executed
POP DPL 01 from stack is moved to DPL
POP DPH 84 from stack is moved to DPH
MOVX @DPTR, A second data is moved is moved to first
location
INC DPTR DPTR incremented
MOV A ,B first data in B is moved to A
MOVX @DPTR,A this first data is moved to second location
NEXT | DINZRI1, BACK jump for next two data comparison
DINZ RO, AGAIN jump for next scan
HLT | SIMP HLT stay at here
DESCENDING ORDER

Assume that the data to be arranged are available in array which starts from 8401h

and the array length is assumed as 09 .

Label Mnemonics Comments
MOV RO, #08H array length 08h(09-01) is stored
AGAIN | MOV A, RO 08h is moved to R1
MOV RI1, A Data moved to R1
MOV DPTR, #8401H DPTR is initialized with 8401h
BACK | PUSH DPH 84 is saved in stack
PUSH DPL 01 is saved in stack
MOVX A, @DPTR first data is moved to A
MOV B, A this data is copied into B
INC DPTR DPTR incremented
MOVX A, @DPTR second data is moved to A
CINE A,B, LOOP first data in B and next data in A are
compared. Carry will
generate if B value is bigger
LOOP | JC NEXT if carry(second data is smaller)instruction
labeled NEXT will be executed
POP DPL 01 from stack is moved to DPL
POP DPH 84 from stack is moved to DPH
MOVX @DPTR, A second data is moved is moved to first
location
INC DPTR DPTR incremented
MOV A B first data in B is moved to A
MOVX @DPTR,A this first data is moved to second location
NEXT | DINZRI1, BACK jump for next two data comparison
DJNZ RO, AGAIN jump for next scan
HLT | SIMP HLT stay at here
BCD TO ASCII CONVERSION

To covert BCD number, each digit is separately considered and equivalent ASCII
value is generated.
Ex. To convert 65, 5is converted into ASCII value 35 and 6 is converted into ASCII

36.

Assume that the BCD value 65 is stored in memory location 8400h and ASCII values are
stored in 8401, 8402.

GVN COLLEGE

DEPARTMENT OF ELETRONICS

MICROPROCESSOR & MIROCONTROLLER

Label Mnemonics Comments
MOV DPTR #8400H DPTR is initialized with 8400h
MOV XA, @DPTR First Data Is Moved To A
MOV R1,A Data moved to R1
ANL A, #0FH Get the Lower data
ORL A #30H OR logic for 30h
INC DPTR DPTR incremented
MOVX @DPTR,A Second Data Is Moved To A
INC DPTR DPTR incremented
MOV ARI Data moved to R1
ANL A #FOH Get the Upper data
SWAP A Move the lower value
ORL A #30H OR logic for 30h
MOVX @DPTR,A Store the Result

HLT | SIMPHLT stay at here

ASCII TO BINARY CONVERSION
Assume that ASCII value is stored in

8400h and answer to be stored in 8401h

Label Mnemonics Comments
MOV DPTR, #8400H DPTR is initialized with 8400h
MOV A, @DPTR First Data Is Moved To A

MOV RI, A

Data moved to R1

CINE A #40H, NEXT

first data in 40h and next data in A are
compared. Carry will generate if B value is
bigger

NEXT: | JC LOOP

if carry(second data is smaller)instruction
labeled NEXT will be executed

CLR C Clear carry flag

SUBB A, #07H Subtract the value Data from 07 h
LOOP: | CLR C Clear carry flag

SUBB A, #30H Subtract the value Data from 30 h

INC DPTR DPTR incremented

MOVX @DPTR ,A Store the Result

HLT | SIMP HLT

stay at here

ODD PARITY GENERATOR

Odd parity means that the total number of 1’s in data as well as in parity bit is ODD.
Assume that the data 42H for which the parity is to be generated and the result is to be Stored

in 8400h.
The data 42h has 2 nos. of ‘1’s. So one bit is generated to make ODD parity.

Label Mnemonics Comments
MOV DPTR, #8400H memory address is loaded in DPTR
MOV R1,#08 to rotate the data 8times,R1 is initialised
MOV R2,#00 counter initialized to count no.of ‘1’s
MOV A #42h the data 42h is stored in A

BACK: | RRC A the data is rotated
JINC XXX if not carry, jump to label XXX
INC R2 if carry, R2 is incremented

XXX | DINZRI1, BACK 8 rotation is checked

MOV A R2 no. of 1 sin R2 is moved to A

GVN COLLEGE

DEPARTMENT OF ELETRONICS

MICROPROCESSOR & MIROCONTROLLER

MOV B, #02 to test the even ,that should be
DIV AB divide by 02
MOV A,B the remainder(it is 0 for even no of 1’s in
data) is Move to A
CPL A A value is complemented
MOVX @DPTR,A, Complemented value is stored in memory
HLT | SIMP HLT
EVEN PARITY GENERATOR

Even parity means that the total number of 1’s in data as well as in parity bit is even.
Assume that the data 42H for which the parity is to be generated and the result is to be Stored
in 8400h.The data 42h has 2 nos. of ‘1’s. So NO need of one bit is generated to make even

parity.
Label Mnemonics Comments
MOV DPTR, #8400H memory address is loaded in DPTR
MOV R1,#08 to rotate the data 8times,R1 is initialised
MOV R2,#00 counter initialized to count no.of ‘1’s
MOV A #42h the data 42h is stored in A
BACK: | RRC A the data is rotated
JINC XXX if not carry, jump to label XXX
INC R2 if carry, R2 is incremented
XXX | DINZRI1, BACK 8 rotation is checked
MOV A R2 no. of 1 sin R2 is moved to A
MOV B,#02 to test the even ,that should be
DIV AB divide by 02
MOV A.B the remainder(it is 0 for even no of 1’s in
data) is Move to A
MOVX @DPTR,A, Complemented value is stored in memory
HLT | SIMP HLT stay at here
TIME DELAY ROUTINE

To hold the output or operation of controller, the controller must be forced into delay
Routine. This delay may be increased by increasing number of loops.
Delay Routine using single loop

Label Mnemonics Comments
MOV R1 #FFH value FF is loaded in to R1
DINZ R1, WAIT R1 is decremented till reach to zero
HLT | SIMPHLT stay at here
Delay Routine using double loop
Label Mnemonics Comments
MOV R1 #FFH R1 is initialized with FF
LOOP | MOV R2, #FEH R2 is initialized with FE
WAIT | DINZ R2, WAIT R2 is decremented till reach to zero
DINZ R1, LOOP once R2 reach zero, R1 is decremented till to
zero and again R2 initialised with FE
HLT | SJIMP HLT

GVN COLLEGE

DEPARTMENT OF ELETRONICS

