
UNIT-5– Notes

Memory Organization

🔹 1. Definition
 Memory organization refers to the way computer memory is structured, arranged, and

accessed by the CPU to store and retrieve instructions and data efficiently.

It determines:

 How memory is divided (hierarchically and physically)

 How data is addressed and accessed

 How the operating system and hardware coordinate to manage memory use

🔹 2. Types of Memory in a Computer System

Type Description Example

Primary Memory Directly accessible by CPU; temporary storage RAM, Cache, Registers

Secondary Memory Non-volatile; used for long-term storage Hard Disk, SSD

Tertiary Memory Used for backup or archival Magnetic tapes, Optical disks

🔹 3. Memory Hierarchy
Memory is organized in a hierarchy based on speed, cost, and capacity:

Level Memory Type Speed Cost Capacity Managed By

1 Registers Fastest Very High Very Low CPU

2 Cache Memory Very Fast High Small Hardware

3 Main Memory (RAM) Medium Moderate Medium OS

4 Secondary Memory Slow Low Large OS / User

5 Tertiary Storage Slowest Lowest Very Large User

Concept:
Data moves between these levels depending on frequency of access (Principle of Locality).

🔹 4. Structure of Main Memory
Main memory (RAM) is divided into:

1. Operating System Area – reserved for system software.

2. User Area – used for user processes and programs.

Example Layout:
+-----------------------------+

| Operating System (OS) |

+-----------------------------+

| User Program 1 |

+-----------------------------+

| User Program 2 |

+-----------------------------+

| Free Space |

+-----------------------------+

🔹 5. Memory Addressing
There are two types of addresses:

 Logical Address: Generated by the CPU during program execution.

 Physical Address: Actual location in main memory.

Address Translation:
The Memory Management Unit (MMU) converts logical addresses into physical addresses.

🔹 6. Types of Memory Organization
(a) Sequential Organization

 Data is stored and accessed sequentially.

 Example: Magnetic tapes.

(b) Direct Organization
 Data can be accessed directly using address.

 Example: Hard disks, RAM.

(c) Associative (Content Addressable) Organization
 Data is accessed based on content rather than address.

 Used in cache memory.

🔹 7. Components of Memory Organization
1. Registers – Small, high-speed storage in CPU.

2. Cache Memory – Stores frequently accessed data.

3. Main Memory (RAM) – Holds programs and data currently in use.

4. Secondary Memory – Stores data permanently.

5. Address Bus & Data Bus – Used to transfer addresses and data between CPU and

memory.

🔹 8. Memory Access Methods
Method Description Example

Sequential Access Access data in a sequence Tape drives

Direct Access Access data directly via address Hard disk

Random Access Access any location instantly RAM

Associative Access Access by content Cache

🔹 9. Memory Operations
 Read Operation: Data is fetched from memory to CPU.

 Write Operation: Data is written from CPU to memory.

 Refresh Operation: Required for DRAM to maintain data.

🔹 10. Importance of Memory Organization
 Efficient CPU performance

 Faster data access

 Better utilization of memory space

 Reduced delay in program execution

 Supports multiprogramming and multitasking

🔹 11. Example – Memory Hierarchy Diagram
 +-------------------+

 | Registers | (Fastest, Least Capacity)

 +-------------------+

 | Cache |

 +-------------------+

 | Main Memory |

 +-------------------+

 | Secondary Storage |

 +-------------------+

 | Tertiary Storage |

 +-------------------+

Memory Management



 Memory management is a critical aspect of operating systems that ensures efficient use of

the computer's memory resources. It controls how memory is allocated and deallocated to

processes, which is key to both performance and stability. Below is a detailed overview of the

various components and techniques involved in memory management.

Memory Management:

Why Memory Management is Required?
 Allocate and de-allocate memory before and after process execution.

 To keep track of used memory space by processes.

 To minimize fragmentation issues.

 To proper utilization of main memory.

 To maintain data integrity while executing of process.

Read more about Requirements of Memory Management System here.

Logical and Physical Address Space
 Logical Address Space: The logical address space is the set of all addresses that a

process can generate using its CPU. It defines the range of memory locations

available to the process from its perspective.

https://www.geeksforgeeks.org/operating-systems/what-is-fragmentation-in-operating-system/
https://www.geeksforgeeks.org/operating-systems/requirements-of-memory-management-system/

 Physical Address Space: The physical address space is the set of all actual memory

addresses in the main memory (RAM). It represents the real locations where data

and instructions are stored.

Static and Dynamic Loading
 Loading a process into the main memory is done by a loader. There are two different

types of loading:

 Static Loading: Static Loading is basically loading the entire program into a fixed

address. It requires more memory space.

 Dynamic Loading: Dynamic loading loads program routines into memory only

when they are needed. This saves memory by not loading unused routines. The

routines remain on disk in relocatable (can be loaded at any memory location) format

until called. It allows better memory utilization, especially for large programs.

Static and Dynamic Linking
A linker combines object files into a single executable.

 Static Linking: All required modules are combined into one executable. No runtime

dependency; some OSes support only this method.

 Dynamic Linking: Uses a stub (small code) for library calls. At runtime, the stub

checks if the routine is in memory; if not, it loads it.

Memory Hierarchy

🔹 1. Definition
Memory hierarchy is the organization of different types of memory in a computer system based

on speed, cost, and capacity.

It ensures that the CPU can access data efficiently and quickly while keeping overall cost low.

🔹 2. Purpose of Memory Hierarchy
 To overcome the speed gap between the CPU and main memory.

 To make frequently used data available quickly.

 To provide large storage capacity at a low cost.

 To achieve efficient memory utilization.

🔹 3. Principle of Locality
Memory hierarchy works based on the principle of locality, which means:

1. Temporal Locality:
Recently accessed data is likely to be accessed again soon.

→ Example: Loop variables.

2. Spatial Locality:
Data located close to recently accessed data is likely to be accessed soon.

→ Example: Sequential instruction execution.

🔹 4. Structure of Memory Hierarchy
Memory is organized into multiple levels — from fastest and smallest to slowest and largest:

Level Memory Type Speed Cost per Bit Capacity Managed By

L1 Registers Fastest Very High Very Low CPU

L2 Cache Memory Very Fast High Small Hardware

L3 Main Memory (RAM) Moderate Medium Medium OS

L4 Secondary Memory Slow Low Large OS/User

Level Memory Type Speed Cost per Bit Capacity Managed By

L5 Tertiary Storage Slowest Lowest Very Large User

🔹 5. Memory Hierarchy Diagram
 +-------------------+

 | CPU Registers | ← Fastest, Smallest, Most Expensive

 +-------------------+

 | Cache Memory |

 +-------------------+

 | Main Memory (RAM) |

 +-------------------+

 | Secondary Memory |

 +-------------------+

 | Tertiary Storage | ← Slowest, Largest, Cheapest

 +-------------------+

🔹 6. Description of Each Level
1️⃣ Registers

 Located inside the CPU.

 Store temporary data and instructions.

 Fastest access time (in nanoseconds).

 Very limited capacity (few bytes to kilobytes).

2️⃣ Cache Memory
 High-speed memory between CPU and main memory.

 Stores frequently used instructions/data.

 Reduces CPU waiting time.

 Small in size (few MBs).

 Types: L1, L2, L3 caches.

3️⃣ Main Memory (RAM)
 Holds data and instructions currently being used.

 Volatile (data lost when power off).

 Access time in nanoseconds to microseconds.

 Managed by the operating system.

4️⃣ Secondary Memory
 Non-volatile permanent storage (e.g., HDD, SSD).

 Used when data does not fit into main memory.

 Access time in milliseconds.

 Much cheaper and larger than RAM.

5⃣ Tertiary Storage
 Used for backup and archival.

 Examples: Magnetic tapes, optical discs, cloud storage.

 Slowest and lowest cost per bit.

🔹 7. Characteristics Comparison

Feature Registers Cache Main Memory Secondary Tertiary

Speed Very Fast Fast Medium Slow Very Slow

Cost/Bit Very High High Medium Low Very Low

Capacity Very Low Low Medium High Very High

Feature Registers Cache Main Memory Secondary Tertiary

Volatility Volatile Volatile Volatile Non-volatile Non-volatile

Location CPU Between CPU & RAM Motherboard External External

🔹 8. Working of Memory Hierarchy
1. CPU first checks Registers.

o If data is found → fastest access.

2. If not, check Cache Memory (Cache Hit/Miss).

3. If cache miss → fetch from Main Memory.

4. If not in main memory → load from Secondary Storage (Virtual Memory concept).

5. Tertiary storage is used for backup when data is not needed immediately.

🔹 9. Advantages of Memory Hierarchy
✅ Increased processing speed

✅ Efficient utilization of memory

✅ Lower overall cost

✅ Large apparent memory to user

✅ Reduces CPU idle time

🔹 10. Example of Access Time

Memory Type Typical Access Time

Register 1 ns

Cache 2–10 ns

Main Memory 50–100 ns

SSD 100 µs

Hard Disk 5–10 ms

Tape Seconds

Swapping
 Swapping moves processes between main memory and secondary memory to manage limited

memory space. It allows multiple processes to run by temporarily swapping out lower priority

processes for higher priority ones. The swapped-out process resumes once it's loaded back.

Transfer time depends on the amount of data swapped.

Swapping

Memory Management Strategies

🔹 1. Definition
 Memory Management is a function of the operating system that handles the allocation and

deallocation of memory to different programs and processes to ensure:

 Efficient utilization of main memory

 Fast execution of programs

 Protection and isolation among processes

🔹 2. Objectives of Memory Management
 To keep track of each memory location (used or free)

 To allocate memory to processes when required

 To deallocate memory when no longer needed

 To maximize CPU utilization and throughput

 To prevent memory fragmentation

🔹 3. Memory Management Strategies
Memory management strategies decide how processes are placed in main memory.

They are broadly divided into:

1. Contiguous Allocation

2. Non-Contiguous Allocation

🔸 I. Contiguous Memory Allocation
Definition:
Each process is stored in a single continuous block of physical memory.

Characteristics:
 Simple to implement

 Fast access (because addresses are sequential)

 Causes fragmentation problems

1. Single User Contiguous Allocation
 Memory divided into two parts:

1. Operating System area

2. User process area
 Only one process runs at a time.

 Used in simple systems (e.g., early PCs, embedded systems)

Layout:
+------------------------+

| Operating System |

+------------------------+

| User Process |

+------------------------+

2. Fixed Partition Multiprogramming

 Main memory divided into fixed-size partitions.

 Each partition holds exactly one process.

 When a partition is free, another process can occupy it.

Advantages:
 Simple implementation

 Supports limited multiprogramming

Disadvantages:
 Internal fragmentation: unused space within a partition

 Fixed number of processes → limited flexibility

Example Layout:
+------------------+

| OS |

+------------------+

| Partition 1 (P1) |

+------------------+

| Partition 2 (P2) |

+------------------+

| Partition 3 (P3) |

+------------------+

3. Variable Partition Multiprogramming
 Memory divided into variable-sized partitions dynamically depending on process size.

 When a process ends, its space is freed for reuse.

Advantages:
 Reduces internal fragmentation

 Flexible allocation according to process size

Disadvantages:
 Causes external fragmentation (small gaps left between partitions)

 Compaction may be required to combine free spaces

Layout Example:
+--------------------------+

| OS |

+--------------------------+

| Process A (100KB) |

+--------------------------+

| Process B (50KB) |

+--------------------------+

| Free Space (30KB) |

+--------------------------+

| Process C (80KB) |

+--------------------------+

4. Memory Swapping
 A process can be swapped out from main memory to disk and swapped in later.

 Used when memory is full to accommodate new processes.

Advantages:
 Increases degree of multiprogramming

 Allows execution of large programs

Disadvantages:
 Swapping time overhead

 Disk I/O is slow

🔸 II. Non-Contiguous Memory Allocation
Definition:
A process can occupy several non-adjacent blocks of memory.

Used in modern operating systems (paging, segmentation).

Advantages:
 Reduces fragmentation

 Efficient use of memory

 Allows processes larger than physical memory

1. Paging
 Divides memory into fixed-size blocks:

o Logical memory → Pages

o Physical memory → Frames

 Each page of a process is loaded into any available frame.

 Uses a page table to map pages to frames.

Advantages:
 Eliminates external fragmentation

 Easy to allocate/free memory

Disadvantages:
 Internal fragmentation within last page

 Page table overhead

2. Segmentation
 Divides process memory into variable-size logical segments like:

o Code

o Data

o Stack

 Each segment has a base and limit stored in the segment table.

Advantages:
 Reflects logical structure of program

 Supports sharing and protection

Disadvantages:
 Causes external fragmentation

3. Paging + Segmentation (Combined System)
 Each segment is divided into pages.

 Combines benefits:

o Logical view of segmentation

o Efficient allocation of paging

Used in modern systems (like Intel processors).

🔹 4. Fragmentation in Memory Management
Type Cause Example Solution

Internal

Fragmentation

Fixed partitions larger than

process

100KB partition, process

needs 70KB

Variable

partitioning

External

Fragmentation

Free memory scattered in

small blocks

3 free spaces: 10KB + 15KB

+ 5KB

Compaction or

paging

🔹 5. Allocation Algorithms
When a process requests memory, the OS chooses where to place it:

Algorithm Description

First Fit Allocate the first available block large enough

Best Fit Allocate the smallest block that fits the process

Worst Fit Allocate the largest available block

Next Fit Similar to first fit but starts searching from the last allocated position

🔹 6. Compaction
 Process of rearranging processes in memory to place all free memory together.

 Reduces external fragmentation.

 Time-consuming, so done occasionally.

Virtual Memory Organization – Notes

🔹 1. Definition
Virtual Memory is a memory management technique that allows the execution of processes that

may not be completely in main memory (RAM).

It gives the illusion of a large, continuous main memory by using a portion of the secondary

storage (disk) as an extension of main memory.

🔹 2. Purpose of Virtual Memory
 To run programs larger than physical memory.

 To allow multiprogramming (multiple processes in memory).

 To provide process isolation and protection.

 To increase CPU utilization by reducing idle time.

 To make memory management automatic and flexible.

🔹 3. Concept of Virtual Memory
Each process has its own logical (virtual) address space.

This address space is mapped to physical memory by the Memory Management Unit (MMU).

Conceptual View:
+--------------------+ +--------------------+

| Virtual Address | ---> | Physical Address |

| (Logical View) | | (Actual RAM Frame) |

+--------------------+ +--------------------+

The unused part of a process is stored temporarily on disk (called swap space).

🔹 4. Advantages of Virtual Memory
✅ Programs larger than physical memory can execute.

✅ Provides isolation and protection between processes.

✅ Enables efficient use of main memory.

✅ Reduces programmer’s burden of memory management.

✅ Allows more processes to be loaded (higher degree of multiprogramming).

🔹 5. Virtual Memory Structure
Virtual memory divides:

 Logical Memory → into pages

 Physical Memory (RAM) → into frames

Only active pages are kept in RAM, and the rest are stored on disk.

🔹 6. Multilevel Storage Organization
Virtual memory relies on a multilevel storage hierarchy:

Level Memory Type Role

1 Main Memory (RAM) Stores currently active pages

2 Secondary Storage (Disk) Stores inactive pages (swap area)

3 Cache / Registers Stores recently accessed data

Working Principle:
Frequently used data stays closer to the CPU → improves performance.

🔹 7. Block Mapping
In virtual memory, block mapping means mapping between virtual blocks (pages) and

physical blocks (frames).

Mapping types (used in cache and paging systems):

1. Direct Mapping – Each block maps to a specific frame.

2. Associative Mapping – Any block can go into any frame.

3. Set-Associative Mapping – A compromise between the two.

Mapping Table:
Maintained by the OS to translate virtual addresses into physical ones.

🔹 8. Paging – Basic Concepts
 Divides logical memory into fixed-size pages (e.g., 4 KB each).

 Divides physical memory into frames of the same size.

 OS maintains a Page Table that maps each page to a frame.

Example:

Page No. Frame No.

0 5

1 2

2 7

When a process accesses data:

 CPU generates a virtual address (page number + offset)

 MMU translates it using the page table.

If the page is not in RAM, a page fault occurs → OS loads the page from disk.

Advantages of Paging

✅ Eliminates external fragmentation.

✅ Allows non-contiguous memory allocation.

✅ Simplifies memory allocation and protection.

Disadvantages

❌ Internal fragmentation (unused space within last page).

❌ Page table overhead.

❌ Page fault handling causes delays.

🔹 9. Segmentation – Basic Concepts
 Divides memory into logical segments such as:

o Code Segment

o Data Segment

o Stack Segment

 Each segment has variable length.

Each segment is identified by a segment number and has a base (starting address) and limit

(size).

Addressing:
Logical Address = <Segment Number, Offset>

MMU adds the base address to the offset → physical address.

Advantages:
 Reflects logical structure of programs.

 Enables sharing and protection.

Disadvantages:
 Causes external fragmentation.

 More complex than paging.

🔹 10. Paging + Segmentation Systems (Combined

Approach)
Many modern systems (like Intel x86) combine both techniques:

 Each segment is divided into pages.

 Paging handles physical memory allocation.

 Segmentation manages logical program structure.

Benefits:

✅ Logical division of memory

✅ Efficient physical memory use

✅ Reduced fragmentation

🔹 11. Virtual Memory Address Translation
Virtual Address → Physical Address

1. CPU generates a virtual address.

2. MMU checks page table to find corresponding frame.

3. If page not in memory → page fault → load page from disk.

4. After loading, page table is updated.

Virtual Memory Management

🔹 1. Definition
Virtual Memory Management is the process by which the Operating System (OS) manages

virtual memory, deciding:

 Which parts of a process are kept in main memory (RAM)

 Which parts are stored on disk

 When and how to swap pages in and out

It uses techniques like demand paging and page replacement algorithms to make efficient use

of limited physical memory.

🔹 2. Objectives of Virtual Memory Management
 Execute large programs with limited physical memory

 Increase CPU utilization and system throughput

 Provide isolation between processes

 Reduce memory fragmentation

 Efficiently handle page faults

🔹 3. Conceptual Overview
Virtual memory divides:

 Logical (virtual) address space → into pages

 Physical memory (RAM) → into frames

Only the required pages are kept in RAM; the rest stay in secondary storage (swap area).

Address translation:
Performed by the Memory Management Unit (MMU) using a page table.

🔹 4. Components of Virtual Memory Management

Component Description

Page Table Maps virtual pages to physical frames

Component Description

Frame Table Keeps track of which frames are occupied

Swap Space Area on disk used to store pages not currently in memory

MMU (Memory Management Unit) Hardware that translates virtual → physical addresses

TLB (Translation Lookaside Buffer) Cache that stores recent page translations for faster access

🔹 5. Demand Paging
Definition:
In demand paging, pages are loaded into main memory only when they are needed during

execution — not all at once.

Steps in Demand Paging:
1. CPU generates a virtual address.

2. MMU checks if the page is in memory.

o If yes → normal execution.

o If no → page fault occurs.

3. OS selects a free frame (or replaces an existing one).

4. The required page is fetched from disk into memory.

5. Page table is updated and process resumes.

Advantages:

✅ Efficient use of memory (only required pages are loaded).

✅ Faster program start-up.

✅ Enables execution of large programs.

Disadvantages:

❌ Page fault overhead (disk access is slow).

❌ Requires additional hardware support (MMU, TLB).

❌ May lead to thrashing if too many page faults occur.

🔹 6. Page Fault
 Occurs when a page required by a process is not in main memory.

 The OS must handle it by:

1. Suspending the process.

2. Finding the required page on disk.

3. Loading it into a free or replaced frame.

4. Updating the page table.

5. Restarting the process.

Page Fault Steps Diagrammatically:
Page Request → Check Page Table → Page Not Found → Page Fault → Load from Disk → Update Page Table →

Resume Execution

🔹 7. Page Replacement Strategies
When a page fault occurs and no free frame is available, OS must choose which page to

replace.

Common Page Replacement Algorithms

Algorithm Description Pros Cons

FIFO (First-In

First-Out)
Replaces the oldest loaded page. Simple

Poor performance; may

replace frequently used

pages.

LRU (Least

Recently Used)

Replaces the page that hasn’t been

used for the longest time.

Good

performance

Requires time tracking;

hardware support needed.

Optimal (OPT)

Replaces the page that will not be

used for the longest time in the

future.

Theoretically

best

Not practical (requires future

knowledge).

Clock (Second

Chance)

Modified FIFO; uses a reference bit

to give pages a “second chance.”

Efficient and

simple

Slightly more complex than

FIFO.

LFU (Least

Frequently Used)

Replaces the page with the least

number of accesses.

Based on actual

usage

May not reflect current

locality.

🔹 8. Page Replacement Example (FIFO)
Given:
Memory with 3 frames and reference string:

7, 0, 1, 2, 0, 3, 0, 4

Steps:
 Load 7, 0, 1 → full

 Next: Replace 7 (oldest) → 2

 Continue with replacement based on arrival order.

Page Faults: occur when required page not found.

🔹 9. Working Set Model
 The Working Set of a process = set of pages used recently.

 OS tries to keep this set in memory to reduce page faults.

 Helps detect thrashing (excessive paging activity).

🔹 10. Thrashing
Definition:
When the CPU spends more time swapping pages in and out of memory than executing

instructions.

Causes:
 Too many processes in main memory.

 Insufficient frames allocated per process.

 Poor page replacement policy.

Solutions:

✅ Reduce degree of multiprogramming.

✅ Use working set or page fault frequency control.

✅ Increase physical memory.

🔹 11. Effective Access Time (EAT)
To measure performance:
EAT=(1−p)×tm+p×(tp+tm)EAT = (1 - p) \times t_m + p \times (t_p + t_m)EAT=(1−p)×tm+p×(tp+tm)

Where:

 p = page fault rate

 t_m = memory access time

 t_p = page fault service time (includes disk I/O)

Lower p → better performance.

🔹 12. Segmentation and Paging in Virtual Memory

Management
Feature Paging Segmentation

Division Fixed-size pages Variable-size segments

Purpose Physical memory management Logical memory management

Fragmentation Internal External

Address Page number + offset Segment number + offset

Modern OSs often combine both for efficient virtual memory handling.

🔹 13. Advantages of Virtual Memory Management
✅ Efficient RAM utilization

✅ Supports large address spaces

✅ Provides memory protection & isolation

✅ Increases degree of multiprogramming

✅ Simplifies program loading

🔹 14. Disadvantages
❌ Page fault overhead

❌ Thrashing under heavy load

❌ Complex hardware and software support

❌ Disk access latency

Page Replacement Strategies (with Examples & Solutions)

🔹 1. Introduction
When a page fault occurs and there is no free frame available in main memory, the Operating

System must decide which page to remove — this decision is made by the page replacement

algorithm.

Goal:

👉 Minimize the number of page faults (i.e., disk accesses).

👉 Maintain good CPU utilization and system performance.

🔹 2. Common Page Replacement Algorithms
Algorithm Description Type

FIFO (First-In First-Out) Replace the oldest page loaded into memory Simple

OPT (Optimal)
Replace the page that will not be used for the longest time in

future
Theoretical Best

LRU (Least Recently Used) Replace the page that has not been used for the longest time
Practical &

efficient

Clock / Second Chance Modified FIFO with reference bits Balanced

LFU (Least Frequently

Used)
Replace the page with least usage count Frequency-based

🔹 3. FIFO (First-In, First-Out) Algorithm
Concept:

 The page that entered first will be replaced first — like a queue.

Example 1: FIFO
Reference string:
7, 0, 1, 2, 0, 3, 0, 4, 2, 3

Frames available: 3

Step Page Frame 1 Frame 2 Frame 3 Page Fault?

1 7 7 - - ✅

2 0 7 0 - ✅

3 1 7 0 1 ✅

4 2 2 0 1 ✅ (7 replaced)

5 0 2 0 1 ❌

6 3 2 3 1 ✅ (0 replaced)

7 0 2 3 0 ✅ (1 replaced)

8 4 4 3 0 ✅ (2 replaced)

9 2 4 2 0 ✅ (3 replaced)

10 3 4 2 3 ✅ (0 replaced)

✅ Total Page Faults = 9

🔹 4. Optimal (OPT) Algorithm
Concept:
Replace the page that will not be used for the longest period in the future.

Best theoretical algorithm — used for comparison.

Example 2: OPTIMAL
Reference string:
7, 0, 1, 2, 0, 3, 0, 4, 2, 3

Frames available: 3

Step Page Frame 1 Frame 2 Frame 3 Page Fault? Replacement

1 7 7 - - ✅ -

2 0 7 0 - ✅ -

3 1 7 0 1 ✅ -

4 2 2 0 1 ✅ 7 (used farthest later)

5 0 2 0 1 ❌ -

6 3 2 0 3 ✅ 1 replaced

7 0 2 0 3 ❌ -

8 4 4 0 3 ✅ 2 replaced

Step Page Frame 1 Frame 2 Frame 3 Page Fault? Replacement

9 2 4 0 2 ✅ 3 replaced

10 3 3 0 2 ✅ 4 replaced

✅ Total Page Faults = 7

→ Optimal gives the minimum possible page faults.

🔹 5. LRU (Least Recently Used) Algorithm
Concept:
Replace the page that has not been used for the longest time (based on recent history).

Implementation:
 Use stack or timestamps.

Example 3: LRU
Reference string:
7, 0, 1, 2, 0, 3, 0, 4, 2, 3

Frames: 3

Step Page Frame 1 Frame 2 Frame 3 Page Fault? Replacement

1 7 7 - - ✅ -

2 0 7 0 - ✅ -

3 1 7 0 1 ✅ -

4 2 2 0 1 ✅ 7 replaced

5 0 2 0 1 ❌ -

6 3 2 0 3 ✅ 1 replaced

7 0 2 0 3 ❌ -

8 4 4 0 3 ✅ 2 replaced

9 2 4 2 3 ✅ 0 replaced

10 3 4 2 3 ❌ -

✅ Total Page Faults = 7

→ LRU often performs close to the Optimal algorithm.

	UNIT-5– Notes
	Memory Organization
	🔹 1. Definition
	🔹 2. Types of Memory in a Computer System
	🔹 3. Memory Hierarchy
	🔹 4. Structure of Main Memory
	🔹 5. Memory Addressing
	🔹 6. Types of Memory Organization
	(a) Sequential Organization
	(b) Direct Organization
	(c) Associative (Content Addressable) Organization

	🔹 7. Components of Memory Organization
	🔹 8. Memory Access Methods
	🔹 9. Memory Operations
	🔹 10. Importance of Memory Organization
	🔹 11. Example – Memory Hierarchy Diagram

	Memory Management
	Why Memory Management is Required?
	Logical and Physical Address Space
	Static and Dynamic Loading
	Static and Dynamic Linking

	Memory Hierarchy
	🔹 1. Definition
	🔹 2. Purpose of Memory Hierarchy
	🔹 3. Principle of Locality
	🔹 4. Structure of Memory Hierarchy
	🔹 5. Memory Hierarchy Diagram
	🔹 6. Description of Each Level
	1️⃣ Registers
	2️⃣ Cache Memory
	3️⃣ Main Memory (RAM)
	4️⃣ Secondary Memory
	5️⃣ Tertiary Storage

	🔹 7. Characteristics Comparison
	🔹 8. Working of Memory Hierarchy
	🔹 9. Advantages of Memory Hierarchy
	🔹 10. Example of Access Time
	Swapping

	Memory Management Strategies
	🔹 1. Definition
	🔹 2. Objectives of Memory Management
	🔹 3. Memory Management Strategies
	🔸 I. Contiguous Memory Allocation
	Definition:
	Characteristics:
	1. Single User Contiguous Allocation
	2. Fixed Partition Multiprogramming
	3. Variable Partition Multiprogramming
	4. Memory Swapping

	🔸 II. Non-Contiguous Memory Allocation
	Definition:
	Advantages:
	1. Paging
	2. Segmentation
	3. Paging + Segmentation (Combined System)

	🔹 4. Fragmentation in Memory Management
	🔹 5. Allocation Algorithms
	🔹 6. Compaction

	Virtual Memory Organization – Notes
	🔹 1. Definition
	🔹 2. Purpose of Virtual Memory
	🔹 3. Concept of Virtual Memory
	🔹 4. Advantages of Virtual Memory
	🔹 5. Virtual Memory Structure
	🔹 6. Multilevel Storage Organization
	🔹 7. Block Mapping
	🔹 8. Paging – Basic Concepts
	Advantages of Paging
	Disadvantages

	🔹 9. Segmentation – Basic Concepts
	🔹 10. Paging + Segmentation Systems (Combined Approach)
	🔹 11. Virtual Memory Address Translation

	Virtual Memory Management
	🔹 1. Definition
	🔹 2. Objectives of Virtual Memory Management
	🔹 3. Conceptual Overview
	🔹 4. Components of Virtual Memory Management
	🔹 5. Demand Paging
	Definition:
	Steps in Demand Paging:
	Advantages:
	Disadvantages:

	🔹 6. Page Fault
	🔹 7. Page Replacement Strategies
	Common Page Replacement Algorithms

	🔹 8. Page Replacement Example (FIFO)
	🔹 9. Working Set Model
	🔹 10. Thrashing
	Definition:
	Causes:
	Solutions:

	🔹 11. Effective Access Time (EAT)
	🔹 12. Segmentation and Paging in Virtual Memory Management
	🔹 13. Advantages of Virtual Memory Management
	🔹 14. Disadvantages

	Page Replacement Strategies (with Examples & Solutions)
	🔹 1. Introduction
	🔹 2. Common Page Replacement Algorithms
	🔹 3. FIFO (First-In, First-Out) Algorithm
	Example 1: FIFO

	🔹 4. Optimal (OPT) Algorithm
	Example 2: OPTIMAL

	🔹 5. LRU (Least Recently Used) Algorithm
	Example 3: LRU

