
Lecture 12: Introduction to Graphs and
Trees CS 5002: Discrete Math

Tamara Bonaci, Adrienne Slaughter

Northeastern University

November 29, 2018

CS 5002: Discrete Math ©Northeastern University Fall 2018 1
1 Review: Proof Techniques

2 Some Graph and Tree Problems

3 Introduction to Trees

4 Special Trees

5 Tree Traversals

6 Introduction to Graphs

7 Graph Representations

8 Graph Traversals

9 Path Finding in a Graph

CS 5002: Discrete Math ©Northeastern University Fall 2018 2

Section 1

Review: Proof Techniques

CS 5002: Discrete Math ©Northeastern University Fall 2018 3

Proving Correctness

How to prove that an algorithm is correct?

Proof by:

 Counterexample (indirect proof)
 Induction (direct proof)
 Loop Invariant

Other approaches: proof by cases/enumeration, proof by chain of i�s,
proof by contradiction, proof by contrapositive

CS 5002: Discrete Math ©Northeastern University Fall 2018 4

Proof by Counterexample

Searching for counterexamples is the best
way to disprove the correctness of some

things.

 Identify a case for which something is NOT
true
 If the proof seems hard or tricky, sometimes
a counterexample works Sometimes a
counterexample is just easy to see, and can
shortcut a proof
 If a counterexample is hard to find, a proof

might be easier CS 5002: Discrete Math ©Northeastern University

Fall 2018 5

Proof by Induction

Failure to find a counterexample to a given algorithm does not mean
“it is obvious” that the algorithm is correct.

Mathematical induction is a very useful method for proving the

correctness of recursive algorithms.

1 Prove base case
2 Assume true for arbitrary value n
3 Prove true for case n + 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 6

Proof by Loop Invariant

 Built o� proof by induction.
 Useful for algorithms that loop.

Formally: find loop invariant, then prove:
1 Define a Loop Invariant

2 Initialization
3 Maintenance
4 Termination

Informally:
1 Find p, a loop invariant
2 Show the base case for p
3 Use induction to show the rest.

CS 5002: Discrete Math ©Northeastern University Fall 2018 7

Proof by Loop Invariant Is…

Invariant: something that is always true

A�er finding a candidate loop invariant, we prove:

1 Initialization: How does the invariant get initialized?
2 Loop Maintenance: How does the invariant change at each

pass through the loop?
3 Termination: Does the loop stop? When?

CS 5002: Discrete Math ©Northeastern University Fall 2018 8

Steps to Loop Invariant Proof

A�er finding your loop invariant:
 Initialization

 Prior to the loop initiating, does the property hold?

 Maintenance
 A�er each loop iteration, does the property still hold, given

the initialization properties?
 Termination

 A�er the loop terminates, does the property still hold? And for
what data?

CS 5002: Discrete Math ©Northeastern University Fall 2018 9

Things to remember

 Algorithm termination is necessary for proving correctness of the

entire algorithm.
 Loop invariant termination is necessary for proving the behavior of

the given loop.

CS 5002: Discrete Math ©Northeastern University Fall 2018 10

Summary

 Approaches to proving algorithms correct
 Counterexamples

 Helpful for greedy algorithms, heuristics

 Induction
 Based on mathematical induction
 Once we prove a theorem, can use it to build an algorithm

 Loop Invariant
 Based on induction
 Key is finding an invariant

 Lots of examples

CS 5002: Discrete Math ©Northeastern University Fall 2018 11

Section 2

Some Graph and Tree Problems

CS 5002: Discrete Math ©Northeastern University Fall 2018 12

Outdoors NavigationSpiscrete and Data Structures

stern University CS 5002: Discrete Math ©Northeastern University Fall 2018 13

Indoors Navigation

CS 5002: Discrete Math ©Northeastern University Fall 2018 14

Telecommunication Networks

CS 5002: Discrete Math ©Northeastern University Fall 2018 15

Social Networks

CS 5002: Discrete Math ©Northeastern University Fall 2018 16

Section 3

Introduction to Trees

CS 5002: Discrete Math ©Northeastern University Fall 2018 17

What is a Tree?

Tree - a directed, acyclic structure of linked nodes

 Directed - one-way links between nodes (no cycles)
 Acyclic - no path wraps back around to the same node twice

(typically represents hierarchical data)

CS 5002: Discrete Math ©Northeastern University Fall 2018 18

Tree Terminology: Nodes

 Tree - a directed, acyclic structure of linked nodes
 Node - an object containing a data value and links to other

nodes All the blue circles

CS 5002: Discrete Math ©Northeastern University Fall 2018 19

Tree Terminology: Edges

 Tree - a directed, acyclic structure of linked nodes
 Edge - directed link, representing relationships between

nodes All the grey lines

CS 5002: Discrete Math ©Northeastern University Fall 2018 20

Root Node

 Tree - a directed, acyclic structure of linked nodes
 Root - the start of the tree tree)

 The top-most node in the tree
 Node without parents

CS 5002: Discrete Math ©Northeastern University Fall 2018 21

Parent Nodes

 Tree - a directed, acyclic structure of linked nodes
 Parent (ancestor) - any node with at least one child

 The blue nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018 22

Children Nodes

 Tree - a directed, acyclic structure of linked nodes
 Child (descendant) - any node with a parent

 The blue nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018 23

Sibling Nodes

 Tree - a directed, acyclic structure of linked nodes
 Siblings - all nodes on the same level

 The blue nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018 24

Internal Nodes

 Tree - a directed, acyclic structure of linked nodes
 Internal node - a node with at least one children (except

root) All the orange nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018 25

Leaf (External) Nodes

 Tree - a directed, acyclic structure of linked nodes
 External node - a node without children

 All the orange nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018 26

Tree Path

 Tree - a directed, acyclic structure of linked nodes
 Path - a sequence of edges that connects two nodes

 All the orange nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018 27

Node Level

 Node level - 1 + [the number of connections between the node
and the root]

 The level of node 1 is 1
 The level of node 11 is 4

CS 5002: Discrete Math ©Northeastern University Fall 2018 28

Node Height

 Node height - the length of the longest path from the node to
some leaf

 The height of any leaf node is 0
 The height of node 8 is 1
 The height of node 1 is 3
 The height of node 11 is 0

CS 5002: Discrete Math ©Northeastern University Fall 2018 29

Tree Height

Tree height
 The height of the root of the tree, or
 The number of levels of a tree -1.

 The height of the given tree is 3.

CS 5002: Discrete Math ©Northeastern University Fall 2018 30

What is Not a Tree?

Problems:
 Cycles: the only node has a cycle
 No root: the only node has a parent (itself,
because of the cycle), so there is no root

CS 5002: Discrete Math ©Northeastern University Fall 2018 31

What is Not a Tree?

Problems:
 Cycles: there is a cycle in the tree

 Multiple parents: node 3 has multiple parents on di�erent

levels

CS 5002: Discrete Math ©Northeastern University Fall 2018 32

What is Not a Tree?

Problems:
 Cycles: there is an undirected cycle in the tree

 Multiple parents: node 5 has multiple parents on di�erent

levels
CS 5002: Discrete Math ©Northeastern University Fall 2018 33

What is Not a Tree?

Problems:
 Disconnected components: there are two
unconnected groups of nodes

CS 5002: Discrete Math ©Northeastern University Fall 2018 34

Summary: What is a Tree?

 A tree is a set of nodes, and that set can be empty
 If the tree is not empty, there exists a special node called a root
The root can have multiple children, each of which can be the root of
a subtree

CS 5002: Discrete Math ©Northeastern University Fall 2018 35

Section 4

Special Trees

CS 5002: Discrete Math ©Northeastern University Fall 2018 36

Special Trees

 Binary Tree
 Binary Search Tree
 Balanced Tree
 Binary Heap/Priority �eue
 Red-Black Tree

CS 5002: Discrete Math ©Northeastern University Fall 2018 37

Binary Trees

Binary tree - a tree where every node has at most two
children

CS 5002: Discrete Math ©Northeastern University Fall 2018 38

Binary Search Trees

 Binary search tree (BST) - a tree where nodes are organized in
a sorted order to make it easier to search

 At every node, you are guaranteed:

 All nodes rooted at the le� child are smaller than the current
node value

 All nodes rooted at the right child are smaller than the current
node value

CS 5002: Discrete Math ©Northeastern University Fall 2018 39

Example: Binary Search Trees?

Binary search tree (BST) - a tree where nodes are organized in a
sorted order to make it easier to search

 Le� tree is a BST
 Right tree is not a BST - node 7 is on the le� hand-side of the

root node, and yet it is greater than it
CS 5002: Discrete Math ©Northeastern University Fall 2018 40

Example: Using BSTs

Suppose we want to find who has the score
of 15…

CS 5002: Discrete Math ©Northeastern University Fall 2018 41

Example: Using BSTs

Suppose we want to find who has the score of 15:
 Start at the root

CS 5002: Discrete Math ©Northeastern University Fall 2018 42

Example: Using BSTs

Suppose we want to find who has the score of 15:
 Start at the root
 If the score is > 15, go to the le�

CS 5002: Discrete Math ©Northeastern University Fall 2018 43

Example: Using BSTs

Suppose we want to find who has the score of 15:
 Start at the root
 If the score is > 15, go to the le�
 If the score is < 15, go to the right

CS 5002: Discrete Math ©Northeastern University Fall 2018 44

Example: Using BSTs

Suppose we want to find who has the score of 15:
 Start at the root
 If the score is > 15, go to the le�
 If the score is < 15, go to the right
 If the score == 15, stop

CS 5002: Discrete Math ©Northeastern University Fall 2018 45

Balanced Trees

Consider the following two trees. Which tree
would it make it easier for us to search for an
element?

CS 5002: Discrete Math ©Northeastern University Fall 2018 46

Balanced Trees

Consider the following two trees. Which tree would it make it easier
for us to search for an element?

Observation: height is o�en key for how fast functions on our trees

are. So, if we can, we want to choose a balanced tree.

CS 5002: Discrete Math ©Northeastern University Fall 2018 47

Tree Balance and Height

How do we define balance?
 If the heights of the le� and right trees are balanced, the

tree is balanced, so:

CS 5002: Discrete Math ©Northeastern University Fall 2018 48

Tree Balance and Height

How do we define balance?
 If the heights of the le� and right trees are balanced, the

tree is balanced, so:
|(height(le�) − height(right))|

CS 5002: Discrete Math ©Northeastern University Fall 2018 49

Tree Balance and Height

How do we define balance?
 If the heights of the le� and right trees are balanced, the

tree is balanced, so:
|(height(le�) − height(right))|

 Anything wrong with this approach?

CS 5002: Discrete Math ©Northeastern University Fall 2018 50

Tree Balance and Height

How do we define balance?
 If the heights of the le� and right trees are balanced, the

tree is balanced, so:
|(height(le�) − height(right))|

 Anything wrong with this approach?
 Are these trees balanced?

CS 5002: Discrete Math ©Northeastern University Fall 2018 51

Tree Balance and Height

 Observation: it is not enough to balance only root, all nodes

should be balanced.
 The balancing condition: the heights of all le� and right subtrees

di�er by at most 1

CS 5002: Discrete Math ©Northeastern University Fall 2018 52

Example: Balanced Trees?

 The le� tree is balanced.
 The right tree is not balanced. The height di�erence between

nodes 2 and 8 is two.

CS 5002: Discrete Math ©Northeastern University Fall 2018 53

Section 5

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 54

Tree Traversals

Challenge: write a recursive function that starts at the root, and prints
out the data in each node of the tree below

CS 5002:
Discrete Math ©Northeastern University Fall 2018 55

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 56

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 57

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 58

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 59

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 60

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 61

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 62

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 63

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 64

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 65

Tree Traversals

Summary:

CS 5002: Discrete Math ©Northeastern University Fall 2018 66

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 67

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 68

Tree Traversals

Challenge: write a non-recursive function that starts at the root, and
prints out the data in each node of the tree below

CS 5002:
Discrete Math ©Northeastern University Fall 2018 69

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 70

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 71

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 72

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 73

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 74

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 75

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 76

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 77

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 78

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 79

Tree Traversals

CS 5002: Discrete Math ©Northeastern University Fall 2018 80

