Tamara Bonaci, Adrienne Slaughter

Northeastern University

November 29, 2018

Review: Proof Techniques
Some Graph and Tree Problems

Introduction to Trees

Special Trees

Tree Traversals
Introduction to Graphs
Graph Representations
Graph Traversals

Path Finding in a Graph

Section 1

Review: Proof Techniques

Proving Correctness

How to prove that an algorithm is correct?

Proof by:

Counterexample (indirect proof')
Induction (direct proof)
Loop Invariant

Other approaches: proof by cases/enumeration, proof by chain of i s,
proof by contradiction, proof by contrapositive

Proof by Counterexample

Searching for counterexamples is the best
way to disprove the correctness of some

things.

Identify a case for which something is NOT
true

If the proof seems hard or tricky, sometimes
a counterexample works Sometimes a
counterexample is just easy to see, and can
shortcut a proof

If a counterexample is hard to find, a proof

might be easier

Proof by Induction

Failure to find a counterexample to a given algorithm does not mean
“it is obvious” that the algorithm is correct.

Mathematical induction is a very useful method for proving the

correctness of recursive algorithms.

Prove base case
Assume true for arbitrary value n
Prove true for case n + 1

Proof by Loop Invariant

Built o proof by induction.

Useful for algorithms that loop.
Formally: find loop invariant, then prove:

Define a Loop Invariant

Initialization
Maintenance
Termination
Informally:
Find p, a loop invariant
Show the base case for p
Use induction to show the rest.

Proof by Loop Invariant Is...

Invariant: something that is always true

A er finding a candidate loop invariant, we prove:

Initialization: How does the invariant get initialized?

Loop Maintenance: How does the invariant change at each
pass through the loop?

Termination: Does the loop stop? When?

Steps to Loop Invariant Proof

A er finding your loop invariant:
Initialization
Prior to the loop initiating, does the property hold?

Maintenance

A er each loop iteration, does the property still hold, given
the initialization properties?

Termination

A er the loop terminates, does the property still hold? And for
what data?

Things to remember

Algorithm termination is necessary for proving correctness of the

entire algorithm.

Loop invariant termination is necessary for proving the behavior of
the given loop.

Summary

Approaches to proving algorithms correct

Counterexamples
Helpful for greedy algorithms, heuristics

Induction

Based on mathematical induction
Once we prove a theorem, can use it to build an algorithm

Loop Invariant

Based on induction
Key is finding an invariant

Lots of examples

Section 2

Some Graph and Tree Problems

Outdoors Navigation

stern University

Indoors Navigation

Telecommunication Networks

Social Networks

__-;{thare'smglﬂsc-ar'i"
— Efter - ;

.i'n;ﬂh Hnl"“ T Marin
W P !
Sinise
| 1 Rasanna
Tom Robin e
Hanks Wiright, T
s " Tha e
Forpet Prircaes. Ssspki iy Slugeany
BGump Brida 1
A P
wunn; i 32?, T Ml
E hppss,
Shawm

Section 3

Introduction to Trees

What is a Tree?

1

Tree - a directed, acyclic structure of linked nodes
Directed - one-way links between nodes (no cycles)

Acyclic - no path wraps back around to the same node twice
(typically represents hierarchical data)

Tree Terminology: Nodes

Tree - a directed, acyclic structure of linked nodes
Node - an object containing a data value and links to other
nodes All the blue circles

Tree Terminology: Edges

Tree - a directed, acyclic structure of linked nodes
Edge - directed link, representing relationships between
nodes All the grey lines

Root Node

Tree - a directed, acyclic structure of linked nodes

Root - the start of the tree tree)

The top-most node in the tree
Node without parents

Parent Nodes

Tree - a directed, acyclic structure of linked nodes

Parent (ancestor) - any node with at least one child
The blue nodes

Children Nodes

Tree - a directed, acyclic structure of linked nodes

Child (descendant) - any node with a parent
The blue nodes

Sibling Nodes

Tree - a directed, acyclic structure of linked nodes
Siblings - all nodes on the same level
The blue nodes

Internal Nodes

Tree - a directed, acyclic structure of linked nodes
Internal node - a node with at least one children (except
root) All the orange nodes

& -\._. .'. ."'. & R
/ 1 3 ,
@ O

Leaf (External) Nodes

Tree - a directed, acyclic structure of linked nodes

External node - a node without children
All the orange nodes

!

o‘“ ﬂ °
o 5 F\ " ¥ "

7 F; ._ K
.._..- '\-_N.. .._. -\._.. _r'. xh

I

Tree Path

Tree - a directed, acyclic structure of linked nodes
Path - a sequence of edges that connects two nodes
All the orange nodes

Node Level

Node level - 1 + [the number of connections between the node
and the root]

The level of node 1 is 1
The level of node 11 is 4

)
é\o
aop o

=)

Node Height

Node height - the length of the longest path from the node to
some leaf

The height of any leaf node is 0
The height of node 8 is 1

The height of node 1 is 3

The height of node 11 is 0

A

Tree Height

Tree height
The height of the root of the tree, or

The number of levels of a tree -1.
The height of the given tree is 3.

A

What is Not a Tree?

Problems:

Cycles: the only node has a cycle

No root: the only node has a parent (itself,
because of the cycle), so there is no root

A

What is Not a Tree?

Problems:
Cycles: there is a cycle in the tree
Multiple parents: node 3 has multiple parents on di erent

A

levels

What is Not a Tree?

Problems:
Cycles: there is an undirected cycle in the tree
Multiple parents: node 5 has multiple parents on di erent

A

levels

What is Not a Tree?

Problems:

Disconnected components: there are two
unconnected groups of nodes

A

Summary: What is a Tree?

A tree is a set of nodes, and that set can be empty

If the tree is not empty, there exists a special node called a root
The root can have multiple children, each of which can be the root of
a subtree

Section 4

Special Trees

Special Trees

Binary Tree

Binary Search Tree
Balanced Tree

Binary Heap/Priority feue
Red-Black Tree

Binary Trees

Binary tree - a tree where every node has at most two
children

A

Binary Search Trees

Binary search tree (BST) - a tree where nodes are organized in
a sorted order to make it easier to search

At every node, you are guaranteed:

All nodes rooted at the le child are smaller than the current
node value

All nodes rooted at the right child are smaller than the current
node value

Example: Binary Search Trees?

Binary search tree (BST) - a tree where nodes are organized in a
sorted order to make it easier to search

Le treeisaBST
Right tree is not a BST - node 7 is on the le hand-side of the
root node, and yet it is greater than it

Example: Using BSTs

Suppose we want to find who has the score
of 15...

Example: Using BSTs

Suppose we want to find who has the score of 15:
Start at the root

Example: Using BSTs

Suppose we want to find who has the score of 15:
Start at the root
If the score is > 15, go to the le

A

Example: Using BSTs

Suppose we want to find who has the score of 15:
Start at the root
If the score is > 15, go to the le
If the score is < 15, go to the right

A

Example: Using BSTs

Suppose we want to find who has the score of 15:
Start at the root
If the score is > 15, go to the le
If the score is < 15, go to the right
If the score == 15, stop

A

Balanced Trees

Consider the following two trees. Which tree
would it make it easier for us to search for an
element?

A

Balanced Trees

Consider the following two trees. Which tree would it make it easier
for us to search for an element?

A

Observation: height is o en key for how fast functions on our trees
are. So, if we can, we want to choose a balanced tree.

Tree Balance and Height

How do we define balance?

If the heights of the le and right trees are balanced, the
tree is balanced, so:

Tree Balance and Height

How do we define balance?

If the heights of the le and right trees are balanced, the
tree is balanced, so:

|(height(le) — height(right))|

Tree Balance and Height

How do we define balance?

If the heights of the le and right trees are balanced, the
tree is balanced, so:

|(height(le) — height(right))|
Anything wrong with this approach?

Tree Balance and Height

How do we define balance?

If the heights of the le and right trees are balanced, the
tree is balanced, so:

|(height(le) — height(right))|
Anything wrong with this approach?
Are these trees balanced?

A

Tree Balance and Height

A

Observation: it is not enough to balance only root, all nodes
should be balanced.

The balancing condition: the heights of all le and right subtrees
di er by at most 1

Example: Balanced Trees?

A A

The le tree is balanced.

The right tree is not balanced. The height di erence between
nodes 2 and 8 is two.

Section 5

Tree Traversals

Tree Traversals

Challenge: write a recursive function that starts at the root, and prints
out the data in each node of the tree below

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Summary:

Tree Traversals

Tree Traversals

Tree Traversals

Challenge: write a non-recursive function that starts at the root, and
prints out the data in each node of the tree below

A

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

Tree Traversals

